UNIVERSIDAD EAN

FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN GERENCIA DE PROYECTOS

PROPUESTA PARA LA IMPLEMENTACIÓN DE UN SISTEMA DE SEGURIDAD PARA BICICLETAS URBANAS EN LA CIUDAD DE BOGOTÁ

AUTORES:
DIEGO ALEJANDRO BEJARANO
DIEGO MAURICIO RAMIREZ
MARIA CAMILA GONZALEZ
MARK HEIDERMANN
PAULO CESAR RODRIGUEZ

DIRECTOR:
PABLO CESAR OCAMPO VELEZ

BOGOTÁ D.C., 27 DE NOVIEMBRE DE 2019
Resumen

La presente investigación tiene como objetivo proponer un sistema de seguridad para bicicletas basado en la tecnología GPS que aporte a la disminución de hurtos de este medio de transporte en la ciudad de Bogotá y aumente la probabilidad de recuperar una bicicleta robada con la ayuda de las autoridades, contribuyendo a la seguridad ciudadana.

La propuesta parte de identificar los diferentes sistemas de seguridad para bicicleta disponibles en el mercado, posteriormente, por medio de un instrumento de recolección de datos se obtiene información acerca la percepción de los usuarios de bicicleta sobre el entorno y las problemáticas que actualmente más los afecta, información que es analizada de manera cuantitativa y cualitativamente.

Como resultado se pudo evidenciar que la inseguridad no es el mayor desmotivador para los ciclistas como se plantea, sino que también la calidad del aire es un factor predominante para que los usuarios de bicicleta decidan o no utilizar esta alternativa de transporte. Por otro lado, se confirmó que la percepción de los usuarios de bicicleta frente al sistema de seguridad propuesto es positiva y se demostró que tiene ventajas significativas frente a otros sistemas de seguridad para bicicleta. Sin embargo, también se deja en evidencia que no es un sistema innovador en la ciudad de Bogotá y ya está siendo implementado, aunque bajo un esquema de alquiler de bicicletas y por la tanto la propuesta generaría valor al implementarse en usuarios propietarios de su propio sistema GPS.

Finalmente, se recolectan los requisitos para la implementación del sistema y se realiza el enunciado del alcance basado en las herramientas y técnicas propuestas por el PMBOK Sexta Edición.

Palabras Clave
Candado GPS, hurto de bicicletas, propuesta de implementación, seguridad ciudadana, sistema de seguridad para bicicletas, gerencia de proyectos.
Abstract

The purpose of this research is to propose a bicycle safety system based on GPS technology that contributes to the reduction of thefts in the city of Bogotá and increases the probability of recovering a stolen bicycle with the help of the authorities, contributing to citizen security.

The proposal starts by identifying the different bicycle safety systems available in the market, subsequently, through a data collection instrument, information is obtained about the perception of bicycle users about the environment and the problems that currently affect them at most, information that is analyzed quantitatively and qualitatively.

As a result, it was evident that insecurity is not the greatest demotivator for cyclists as proposed, but also that air quality is a predominant factor for bicycle users to decide whether or not to use this alternative of transportation. On the other hand, it was confirmed that the perception of bicycle users against the proposed safety system is positive and it was shown that it has significant advantages over other bicycle safety systems. However, it is also evidenced that it is not an innovative system in the city of Bogotá and is already being implemented, although under a bicycle rental scheme and therefore the proposal would generate value when implemented in users who own their own GPS system.

Finally, the requirements for the implementation of the system are collected and the scope statement is made based on the tools and techniques proposed by the PMBOK Sixth Edition.

Keywords

Bicycle security system, bicycle theft, citizen security, GPS lock, implementation proposal, Project management.
TABLA DE CONTENIDO

1. PLANTEAMIENTO DEL PROBLEMA ...11
 1.1 ANTECEDENTES ...11
 1.2 Planteamiento del problema ..12
2. OBJETIVOS ..13
 2.1 Objetivo general ...13
 2.2 Objetivos específicos ..13
3. JUSTIFICACIÓN ...14
4. MARCO TEÓRICO ..15
 4.1 Sistemas de seguridad para bicicletas ..15
 4.2 Seguridad de los Biciusuarios en la ciudad de Bogotá ..19
 4.3 Experiencia de registros de bicicleta a nivel internacional22
 4.4 Acciones del estado frente al hurto de bicicletas ..23
 4.5 Sistema de Posicionamiento Global ...25
 4.6 La Gestión del Alcance del Proyecto ..26
5. METODOLOGÍA ..27
 5.1 FASE I: Investigación Documental ...28
 5.1.1 Paso 1: Identificación de sistemas de seguridad existentes29
 5.1.2 Paso 2: Análisis de ventajas y desventajas ..29
 5.1.3 Paso 3: Definición de requisitos ...29
 5.2 FASE II: Investigación de Campo ...29
 5.2.1 Elaboración del instrumento ..29
 5.2.2 Recopilación de datos ..30
 5.2.3 Análisis de los datos ..30
 5.3 Elaboración de la Propuesta ..30
 5.3.1 Recopilación de los requisitos ...30
 5.3.2 Definición del alcance ..31
 5.3.3 Conclusiones y recomendaciones ..32
6. VARIABLES ..32
 6.1 Variable: Motivación ..33
6.2 Variable: Percepción ...35
6.3 Variable: Preferencia ...36
6.4 Variable: Usuario de Bicicleta ...37
7. HIPÓTESIS ..38
8. SISTEMAS DE SEGURIDAD PARA BICICLETAS ...39
 8.1 Guayas y Cadenas de Seguridad ..39
 8.2 Candados en U ..40
 8.3 Candados Desplegables ..41
 8.4 Candados para Cuadro ...42
 8.5 Sistemas no convencionales ...43
 8.5.1 Asiento-Candado Seatylock ...43
 8.5.2 Bicicletas Yerka ..44
 8.6 Sistemas con tecnología GPS ..45
 8.6.1 BikeSpike ..45
 8.7 Lock8 ..46
 8.8 BitLock ..47
 8.9 Ventajas y Desventajas ..48
 8.10 Casos de Éxito en Colombia de Sistemas de Seguridad con Tecnología GPS50
9. INSTRUMENTOS DE RECOLECCIÓN DE DATOS ..50
 9.1 La encuesta ...51
 9.1.1 Diseño del cuestionario ...52
 9.1.2 Tipos de preguntas ..52
 9.1.3 Extensión del cuestionario ...53
 9.1.4 Formato definitivo ..53
 9.2 Análisis documental ..54
10. MUESTREO ..54
11. RESULTADOS ..55
 11.1 Variable de Motivación ..56
 11.2 Variable de Percepción ..58
 11.3 Variable de Preferencia ..63
 11.4 Análisis de Confiabilidad de los Datos ..63
11.4.1 Variable de Motivación ... 64
11.4.2 Variable de Percepción ... 65

11.5 Resultados de la correlación .. 68
 11.5.1 Motivación ... 68
 11.5.2 Percepción .. 69
 11.5.3 Preferencia ... 70

12. DISCUSIÓN ... 71
 12.1 Instrumento de medición ... 71
 12.2 Confiabilidad de los datos .. 72
 12.3 Correlación de los datos ... 73
 12.4 Validación de las hipótesis ... 74

13. RECOPIACION DE REQUISITOS .. 76
 13.1 Entradas .. 76
 13.1.1 Descripción General del Sistema .. 77
 13.1.2 Registro de Supuestos ... 79
 13.1.3 Registro de los Interesados .. 81
 13.2 Herramientas y Técnicas ... 84
 13.2.1 Juicio de Expertos ... 84
 13.2.2 Recopilación de Datos .. 86
 13.2.3 Análisis de Datos ... 87
 13.3 Documentación General de Requisitos .. 88

14. DEFINICIÓN DEL ALCANCE .. 90
 14.1 Entradas .. 90
 14.1.1 Documentos del proyecto .. 90
 14.2 Herramientas y técnicas ... 91
 14.2.1 Juicio de expertos ... 91
 14.2.2 Análisis de datos ... 91
 14.2.3 Análisis del producto ... 92
 14.3 Salidas ... 92
 14.3.1 Enunciado del alcance del proyecto 92
 14.3.1.1 Descripción del Alcance del proyecto 93
14.3.1.2 Entregables y sus criterios de aceptación ..95
14.3.1.3 Exclusiones del proyecto...97
15. CONCLUSIONES Y RECOMENDACIONES..98
16. REFERENCIAS BIBLIOGRÁFICAS ...101
17. ANEXOS ..105
LISTADO DE TABLAS

Tabla 1. Variables y dimensiones del proyecto...33
Tabla 2. Dimensiones, indicadores e ítems de la variable Motivación34
Tabla 3. Dimensiones, indicadores e ítems de la variable Percepción35
Tabla 4. Dimensiones, indicadores e ítems de la variable Preferencia37
Tabla 5. Dimensiones, indicadores e ítems de la variable Usuario de Bicicleta38
Tabla 6. Comparativo de los sistemas de seguridad ..48
Tabla 7. Correlacion de la motivacion ...69
Tabla 8 Correlacion de la percepción relacionada a la Seguridad Ciudadana69
Tabla 9 Correlacion de la percepción relacionada a los sistemas de seguridad70
Tabla 10 Correlacion de la preferencia ..71
Tabla 11. Registro de supuestos ...79
Tabla 12. Interesados de la propuesta ...81
Tabla 13. Requisitos del modo de comunicación ...85
Tabla 14. Requisitos del módulo GPS ..85
Tabla 15. Requisitos técnicos generales ..86
Tabla 16. Requisitos del módulo GPS ..87
Tabla 17. Matriz de requisitos ...88
LISTADO DE FIGURAS

Figura 1. Guayas y cadenas de seguridad ...40
Figura 2. Candado en U ...41
Figura 3. Candado desplegable ..42
Figura 4. Candado de cuadro ..43
Figura 5. Sistema de seguridad Seatylock ...44
Figura 6. Bicicleta Yerka ...45
Figura 7. Sistema BikeSpike ..46
Figura 8. Sistema Seguridad Lock 8 ...47
Figura 9. Sistema Seguridad BitLock ...48
Figura 10. Considerando la seguridad (nivel delincuencia), ¿qué tan motivado se siente usted para usar la bicicleta como medio de transporte? ...56
Figura 11. Considerando la calidad del aire, ¿qué tan motivado se siente para usar la bicicleta como medio de transporte? ..57
Figura 12. Considerando el estado de la malla vial (ciclorutas), ¿Qué tan motivado se siente para usar la bicicleta como medio de transporte? ...57
Figura 13. ¿Qué tan segura considera usted la ciudad de Bogotá para movilizarse en bicicleta? ...58
Figura 14. Frente a un acto de inseguridad, ¿qué tan eficaz cree usted que reacciona la policía? ..59
Figura 15. En caso que su bicicleta fuera robada, ¿qué posibilidad cree usted que tendría de recuperarla? ..59
Figura 16. ¿Cree usted que el Sistema propuesto aumentaría la eficacia de las autoridades para recuperar su bicicleta en caso de hurto? ...60
Figura 17. ¿Cree usted que con el uso del Sistema de seguridad propuesto se incrementaría la probabilidad de recuperar su bicicleta en caso de hurto?61
Figura 18. ¿Usar el Sistema de seguridad propuesto incentivaría un uso mayor de la bicicleta? ...61
Figura 19. ¿Con este Sistema de seguridad, se sentiría más seguro al usar la bicicleta? ..62
Figura 20. ¿Qué tan eficiente cree usted que es un Sistema de seguridad basado en tecnología GPS? ...63
Figura 21. Confiabilidad de la Variable Motivación ...65
Figura 22. Confiabilidad de la Variable Percepción relacionada a la Seguridad Ciudadana ..66
Figura 23. Confiabilidad de la Variable Percepción relacionada al Sistema de Seguridad Propuesto..67
Figura 24. Modo de uso del sistema propuesto ...78
Figura 25. Matriz de interesados ..83
Figura 26. Diagrama de Flujo Enunciado del Alcance ...94
1. PLANTEAMIENTO DEL PROBLEMA

1.1 ANTECEDENTES

La bicicleta tiene más de 200 años y no lo parece. Nacida en 1885, derivada del velocípedo, vuelve a estar de moda. Se diría que renace sin cesar. Probablemente, el origen de esta nueva oleada de interés haya que buscarlo tanto en la voluntad de descubrir el misterio de su estabilidad como en el placer de pasear en bicicleta, tanto en el ahorro de energía como en el espíritu de competición y de aventura. (Brown, Renner, & Flavin, 1998). Como medio de transporte tiene un gran rendimiento: la persona que pedalea gasta hasta cinco veces menos energía (0.15 cal/gr.km) que la que camina (0.75 cal/gr.km). Además, desplazarse en bicicleta por la ciudad requiere 25 veces menos energía que hacerlo en transporte público y 53 veces menos que hacerlo en automóvil. (Lowe, 1989)

A principios de siglo XIX, la bicicleta se había convertido en el modo de transporte de las clases trabajadoras y se había introducido en las sociedades coloniales. La movilidad que brinda la bicicleta sólo se vio oscurecida después de la Segunda Guerra Mundial con el boom del automóvil y la ilusión del petróleo barato.

Hoy por hoy, la bicicleta se considera un medio de transporte saludable, ecológico, económico, práctico y con proyección a generar beneficios de sustentabilidad. A diferencia de los medios de transporte motorizados, la bicicleta no tiene consecuencias negativas para el ambiente y contribuye a disminuir la congestión vehicular. Además, posee efectos restaurativos para el individuo y estimula la actividad física beneficiando a la salud.

Bogotá es reconocida por ser la ciudad colombiana con la red más extensa de carriles exclusivos para bicicletas o ciclo rutas y se está trabajando para que sea la Capital Mundial de la Bici (Secretaría Distrital de Seguridad, Convivencia y Justicia, 2019).

La alcaldía de Bogotá por medio de la Ley 1811 del 2016 ha incentivado el uso de la bicicleta como medio de transporte habilitando los llamados ciclo-carriles y campañas que permiten a los usuarios de bicicleta poder hacer uso de las mismas ya sea para su transporte o recreación, con el fin de mejorar la calidad de vida de la población, evitar el
sobrepeso, disminuir la contaminación, la congestión vial y el desorden que causan los transportes masivos.

Si bien el prestigio de Bogotá como una ciudad amigable para los ciclistas viene desde finales de la década de los noventa, la promoción y construcción de ciclo rutas ha sufrido un importante rezago desde entonces. A pesar de esta situación, el uso de la bicicleta en la ciudad ha aumentado constantemente, de alrededor del 0,5% de los viajes diarios en 1996 hasta el 6% en 2014. (Marquez, 2016)

1.2 Planteamiento del problema

La creciente demanda de este medio de transporte, ha traído consigo una problemática que al igual que los usuarios de bicicleta ha venido en aumento. En los últimos 3 años en Bogotá, los robos de bicicletas han aumentado en un 429% según lo informado por la Personería de Bogotá (Coconubo & González, 2019). Es decir, en promedio se roban 18 bicicletas al día. Dadas estas estadísticas resulta evidente la necesidad de implementar un sistema de seguridad para bicicletas innovador que genere confianza y tranquilidad en los bici-usuarios.

Entre las iniciativas de la alcaldía en conjunto con la Policía Metropolitana de Bogotá, se han desarrollado diferentes estrategias con el ánimo de combatir la delincuencia común y mejorar la calidad de vida de los ciclistas.

En 2019, la Alcaldía Mayor de Bogotá ha implementado un Sistema de Registro de Bicicletas con el cual se pretende combatir el hurto y la comercialización de bicicletas robadas, además facilitar la devolución a sus dueños cuando son recuperadas. A la fecha, este sistema ya cuenta con el registro de más de 14 mil bicicletas y sus usuarios.

Adicionalmente la ciudad cuenta con aproximadamente 200 policías concentrados en los 27 tramos de la ciudad más concurridos por los ciclistas con el fin de hacer presencia, reforzar la vigilancia y contribuir con la prevención de los hurtos. (Medina, 2019).

En lo corrido de 2019 se han hecho 41 actividades en las principales ciclo rutas de localidades como: Usaquén, Chapinero, Bosa, Kennedy, Fontibón, Engativá, Barrios Unidos, Suba, Teusaquillo, Puente Aranda y Ciudad Bolívar, logrando sensibilizar 7.700 personas mediante recomendaciones de autocuidado e invitándolos a denunciar
conductas delictivas en zonas donde los ciudadanos transitan con su bicicleta. (Maira Giraldo - Alcaldía de Bogotá, 2018).

Si bien esta problemática tiene diferentes interesados que deben intervenir para dar una solución definitiva desde diferentes aspectos como los políticos, tecnológicos, logísticos, de infraestructura, entre otros, la implementación de un sistema de seguridad en cada bicicleta que permita aportar a reducir el hurto y aumentar la efectividad de las autoridades en su recuperación, es un paso importante y necesario que se debe adoptar por los ciudadanos, la alcaldía mayor y la policía metropolitana.

Sin embargo, para asegurar el éxito en la implementación de esta propuesta, se debe proceder de una manera metódica, ya que no solo se habla instalar un dispositivo en una bicicleta, sino de la ejecución de un proyecto, por lo tanto, es importante adoptar metodologías y herramientas de gestión de proyectos como la recopilación de requisitos y definición del alcance como parte de un proceso de planificación que es necesario en todo proyecto.

2. OBJETIVOS

2.1 Objetivo general

Evaluar y proponer un sistema de seguridad para los usuarios de bicicletas que disminuya el índice de hurtos en la ciudad de Bogotá, mediante la definición del alcance utilizando herramientas y técnicas de los procesos del PMBOK “recopilar requisitos” y “definir el alcance”.

2.2 Objetivos específicos

- Investigar los diferentes sistemas de seguridad existentes en el mercado y casos de éxito de sistemas orientados a la prevención de hurto de bicicletas con base en las herramientas de recopilación y análisis de datos del proceso del PMBOK Sexta Edición Recopilación de Requisitos.
• Realizar un análisis de la situación actual del uso de la bicicleta como medio de transporte en la ciudad de Bogotá, a partir de percepción de los ciclistas sobre factores de seguridad y movilidad que sumados a las variables ambientales y sociales contribuyen al diagnóstico del entorno.

• Definir el enunciado del alcance de acuerdo a lo recomendado por el PMBOK, de un sistema de seguridad para bicicletas que pueda ser aplicado a la ciudad de Bogotá, teniendo en cuenta los factores de seguridad y movilidad para aportar a la mejora de los indicadores de hurto de bicicletas.

3. JUSTIFICACIÓN

El hurto de bicicletas y la comercialización de partes robadas ha llegado al punto de cobrar víctimas mortales, es por esto que este proyecto busca proporcionar un sistema de seguridad innovador que genere confianza y seguridad en los bici-usuarios, beneficiando a más de 835,000 personas que en promedio se movilizan en este medio de transporte e incentivando a más personas a usarlo. De acuerdo con lo publicado por (Oróstegui, 2019), el 20 de marzo de 2019, cada día se roban 21 bicicletas en la ciudad de Bogotá, y para el año 2018 el balance de bicicletas robadas fue de 7,732. Esta misma publicación también reveló que la satisfacción de los bici-usuarios bajo de 85% a 62% entre 2017 y 2018, lo cual indica que, aunque el uso de este medio de transporte es cada vez mayor, el bienestar de estos usuarios se está viendo afectado en mayor medida. Esta contradicción demuestra que el uso de la bicicleta como medio de transporte más que una solución se ha convertido en una necesidad para las personas y de ahí la importancia de implementar soluciones para el problema de la seguridad.

Dado el alto índice de robos e incremento de la inseguridad para los ciclistas, varias empresas al rededor del mundo están trabajando en la mejora continua de los sistemas de seguridad existentes y en la implementación de nuevas ideas. Es claro que la situación ideal sería no tener que estar expuesto a este tipo de situación, sin embargo, la realidad que se está viviendo exige un mayor autocuidado para lo cual se debe optar uno o varios sistemas de seguridad, de acuerdo a sus posibilidades, para reducir el riesgo.
Es por esto, que surge la necesidad de implementar un sistema de seguridad para bicicletas que sea innovador, robusto, eficiente y que tenga la posibilidad de integrar a las autoridades para ejercer control y atacar el problema de manera directa.

4. MARCO TEÓRICO

De acuerdo con los objetivos de la presente investigación, se han revisado diferentes fuentes de información y autores que han aportado conocimiento sobre los sistemas de seguridad para bicicletas, la problemática de seguridad ciudadana para los ciclistas y métodos para la implementación adecuada de proyectos o propuestas que sirven como base para el presente documento. Adicional a esto se profundiza en la seguridad de los biciusuarios en la ciudad de Bogotá como eje central de la investigación y las acciones del estado frente a los problemas de inseguridad y al hurto de bicicletas. Por último, se hace mención de la Gestión del Alcance del Proyecto y los dos procesos que serán desarrollados a lo largo de la investigación.

4.1 Sistemas de seguridad para bicicletas

En la investigación de sistemas tecnológicos de seguridad se encontraron diferentes dispositivos de búsqueda para bicicletas, a continuación, se mencionan aquellos estudios y artículos donde hacen uso del Sistema de Posicionamiento Global G.P.S. en bicicletas.

SECOM presenta el desarrollo de la primera bicicleta eléctrica aprovisionada con un dispositivo de sistema de posicionamiento global (G.P.S) que se vincula a los servicios de seguridad suministrados por la empresa de seguridad japonesa. Cuenta con un pequeño motor eléctrico que ofrece una autonomía de 62 Km, esta propuesta fue realizada por National Bicycle con el fin de permitir a los propietarios localizar sus bicicletas vía internet si llegan a ser hurtadas, una vez localizadas la agencia de seguridad puede enviar a un agente para la reclamación, también puede ir el propietario a recogerla si cree que ha sido robada. La plataforma permite al usuario ubicar la bicicleta en tiempo real conectándose al sitio web de SECOM o llamando a un operador. (Access Intelligence, 2010)
En otro documento, Borel presenta en un artículo con diferentes accesorios antirrobo para bicicletas, incluyendo un sillín rastreable y el *SpyBike* que es un tapón superior con Sistema de Posicionamiento Global (G.P.S) de la bicicleta. Los diseñadores de *SpyBike* eligieron un sistema de seguimiento, que incluye una tarjeta SIM y una radio G.P.S, dentro de un cilindro, que se desliza dentro de un tubo estándar para el manillar. Si un ladrón mueve la bicicleta, un acelerómetro activa el sistema alimentado por iones de litio para enviar un mensaje de texto al propietario, quien luego puede rastrear la ubicación de su bicicleta en Google Maps. (Borel, 2012)

De igual forma se analiza otro proyecto orientado al monitoreo de personas con Alzheimer de nombre “Diseño de un modelo para el monitoreo de personas con problemas de Alzheimer basado en las tecnologías GSM / GPRS y GPS.”, cuyo objetivo se orienta en el uso del posicionamiento satelital y la red de telefonía celular, enfocados en el estudio de la interacción del sistema GPS y la red GPRS afirman que “Según los resultados, el modelo se obtiene de forma fiable debido a la posición correcta de la persona que padece Alzheimer, lo que garantiza su seguridad y la tranquilidad de su familia”. (Ñaño & Vásquez, 2013)

La empresa Telit Wireless presenta el desarrollo del dispositivo *Yon Bike Lamp* que es un rastreador de alta tecnología incrustado en una luz trasera de bicicleta. Se comunica a través de G.S.M / G.P.R.S y S.M.S permitiendo al usuario iniciar sesión a través de un sitio web o desde una aplicación Android o iPhone y obteniendo información sobre la bicicleta. Con el dispositivo, también es posible enviar un SMS al *Yon Bike Lamp* y, tan pronto como se despierta del modo de suspensión, responde con un enlace web a su ubicación. (Telit Wireless , 2014)

Por otro lado, Jeong Joo presenta el resultado de un estudio donde se propone una metodología para categorizar entornos de ciclismo en la búsqueda de aumentar el uso de bicicletas. El estudio se llevó a cabo utilizando sistemas de posicionamiento global (G.P.S) en bicicletas públicas, el cual permitió hacer un registro estadístico extrayendo el nivel de entornos donde se emplean rutas de ciclismo con los datos de aceleración y velocidad que se obtienen del usuario.(Joo, Oh, Jeong, & Lee, 2015)

También se toma como referencia el proyecto llamado “Monitoreo y localización de personas extraviadas utilizando arduino y GSM/GPS.”, cuyo objetivo fue enfocado en
desarrollar un dispositivo que pudiera monitorear a una persona la cual se encuentre en peligro o se encuentre perdida. Los resultados significativos de este proyecto hacen referencia al bajo costo del proyecto, comparándolos con otros sistemas de monitoreo de nivel satelital, otro de los resultados del proyecto fue la adaptabilidad del sistema en distintas áreas, gracias a la plataforma que ofrece arduino en su entorno de comunicación. (Padilla, Quintero, & Díaz, 2015)

Adicionalmente, Bike+ es un sistema de rastreo que tiene acelerómetro y conexión 3G, los cuales permiten al sistema detectar cuando una bicicleta está siendo robada, por lo cual suena una alarma local y avisa del robo a través de mensajes de texto. A partir de ahí, si no es posible la detención del ladrón, la bicicleta podrá ser rastreada en tiempo real enviando las coordenadas del G.P.S a su teléfono a través de la aplicación complementaria. Para asegurarse de que el seguimiento de la ubicación fuera lo más preciso posible, Bike + utiliza módulos robustos G.P.S y 3G ubicados en extremos opuestos dentro del dispositivo, rastrea las estadísticas y rutas de los viajes en tiempo real. (CARPIET, 2015)

De igual forma Cecchettini presenta un artículo que hace referencia a un método de seguridad llamado bicicleta de cebo donde se pretende equipar a una bicicleta costosa (que exceda el umbral de valor para la clasificación de un delito grave) con un sistema de rastreo oculto, con el fin de empezar un proceso judicial contra los delincuentes. Se hace uso de transmisores y receptores de radiofrecuencia (R.F) activados que son activados mediante movimiento, también cuenta con Sistema de Posicionamiento Global (G.P.S) que permite determinar la ubicación exacta de la bicicleta. (Cecchettini, 2016)

También se encontró Sherlock, la solución del mercado de accesorios que incorpora un pequeño dispositivo antirrobo, que está diseñado para ocultarse en el manillar de cualquier bicicleta y una aplicación móvil. El dispositivo integra un módulo G.P.S para localización, un módulo G.P.R.S para conectividad a Internet y Bluetooth de baja energía. Viene con dos años de conectividad de red incluidos en el precio de compra. (Orange Business Services , 2017)

En otro artículo se presenta un desarrollo de la empresa Wahoo Element donde afirma ser "poderosamente simple" e intuitivo ya que realiza fácilmente un seguimiento constante por medio del G.P.S del móvil, mostrando el recorrido realizado y guarda las
rutas favoritas y registra datos de rendimiento. Los indicadores de luz programables permiten saber cuándo el ritmo cardíaco y velocidad están por encima o por debajo de los objetivos. (Van Sack, 2018)

Por otro lado, la empresa Investor’s Business presenta el desarrollo un sistema automático que permite el rastreo de bicicletas. El desarrollo se estructura basándose en el uso de Sistema de Posicionamiento Global (G.P.S) y una nube que se encargara de guardar la ubicación de cada bicicleta, junto con las distancias recorridas. (Investor’s Business, 2019)

De igual forma, Lesser C. destaca en su artículo las características de las unidades del sistema de posicionamiento global (G.P.S) de consumo para bicicletas, también los servicios proporcionados para ciclistas y antecedentes de MotionBased (una aplicación basada en Internet que maneja datos de G.P.S). Se relaciona la forma en la que una unidad G.P.S puede rastrear velocidad, distancia y elevación en tiempo real, a su vez almacena la ubicación, que luego puede ser referenciada contra una gran cantidad de datos utilizando software de compañías como MotionBased y TrainingPeaks para proporcionar comentarios precisos en forma de un completo registro de capacitación completo con mapas detallados.

La iniciativa frente al uso de la bicicleta ha aumentado en el mundo, obligando a las grandes y medianas ciudades a construir más vías para facilitar el desplazamiento de los nuevos usuarios con el fin de cubrir sus desplazamientos al trabajo, colegios, universidades o como su medio de transporte. La Secretaria de Movilidad afirma que la bicicleta es utilizada para desplazarse diariamente y tiene beneficios en la sociedad, especialmente en ciudades grandes, ya que se está cuidando el medio ambiente y permite que las nuevas generaciones se vean beneficiadas hasta en el mismo aire que respiran. Un aspecto importante que no se puede dejar atrás es el tema de la inseguridad, que actualmente crece en el mundo y está afectando de una manera drástica a la bici usuarios, haciendo que cada día se creen nuevos métodos y dispositivos para ayudar a contrarrestar este problema. (Movilidad, 2017)
4.2 Seguridad de los Biciusuarios en la ciudad de Bogotá

La personería de Bogotá sostuvo que en los últimos tres años el robo de bicicletas aumentó en un 429%, es decir, se roban 18 bicicletas al día, debido a la mala infraestructura para transitar por la ciudad (ciclo rutas) las cuáles están deterioradas o no cuentan con suficiente iluminación, en 2018 se registraron 800.000 viajes, a pesar del incremento del uso de este medio los ciclistas aseguran que se sienten inseguros sobre todo en las ciclorutas. Según un estudio realizado por la Universidad Central el mercado ilegal de partes robadas de bicicletas deja al año 300 millones de pesos. (Central, 2019).

Para combatir esta problemática, en el año 2018 nació el Sistema Único Distrital de Registro Administrativo Voluntario de Bicicletas, que además de asociar todas las bicicletas a sus propietarios, contribuye a la reducción del hurto, a la identificación de establecimientos que ofrecen venta de estos vehículos cuando son hurtados y a facilitar su devolución a los dueños. Tener la bicicleta registrada en el Sistema aumenta la posibilidad de las autoridades de recuperarla, en caso de hurto, y disuade a los delincuentes del robo al saber que se encuentra en una base de datos oficial. Para la Cámara de Comercio de Bogotá la gestión de la seguridad ciudadana es un reto constante que requiere el compromiso del sector público y privado.

Según cálculos de la Secretaría de Movilidad, en Bogotá se hacen más de 635.000 viajes en bicicleta. Los trayectos cortos, de menos de 5 kilómetros, evitan que cerca de 1.206 toneladas de dióxido de carbono se expulsen al aire en un año. Para los trayectos largos, de más de 40 kilómetros, la disminución es 4.800 toneladas al año. Esto comparando si estos viajes se efectuaran en carros.

Además, movilizarse regularmente en bicicleta mejora el acondicionamiento físico y la calidad de vida. Media hora de bicicleta al día reduce el riesgo de problemas cardíacos en un 50%, contribuye a mitigar los problemas relacionados con el sedentarismo, como la obesidad y la diabetes, y permite ahorrar dinero en gasolina y transporte. (Universidad Libre, 2018)

La Universidad Libre de Colombia, realizó un estudio “La Radiografía del Uso de Bicicleta en Bogotá” donde expone datos por localidades, distancias recorridas por año, entre estos puntos se listan las siguientes conclusiones:
Según la investigación, más de 835.000 personas en la ciudad se movilizan actualmente en este alternativo medio de transporte.

Por localidades, Suba, con más de 73.000 viajes en el año, es la zona de la capital con mayor presencia de biciclistas; seguida de Engativá, 64.500 recorridos; y Bosa, 62.000.

Por trayectos diarios en bicicleta, la ciudad reporta un total de 850.000 viajes al día. Kennedy, con 92.570 recorridos; Suba, 73.397; Bosa, 67.077; Engativá, 64.500; Fontibón, 31.269; y Ciudad Bolívar, 25.593, son los principales destinos de los ciclistas en Bogotá.

Por distancias, cerca de 1.500 viajes diarios se hacen en menos de 3 km; 1.250, entre 3 y 5 km; y 800, de 5 a 7 km. Los demás se reparten en trayectos de 8 a más de 17 km.

Al comparar el uso de los medios de transporte, en recorridos menores a 5 km, la bicicleta es el recurso de movilidad más utilizado con un 65%, seguida del carro particular 10%, taxis 10%, Transmilenio 8% y motos 7%.

Por motivos de viajes, el 68% se hacen por motivos de trabajo, el 20 % por estudio, el 12% para encontrarse con otra persona.

Por ocupación, el 36,6% de los biciclistas son trabajadores dependientes, el 29,5% contratistas o independientes, el 17,9% estudiantes de colegio y el 16% universitarios.

Este estudio de la Facultad de Ingeniería de la Universidad Libre revela el perfil de los biciclistas en Bogotá y una completa radiografía del uso que le están dando los ciudadanos a este medio alternativo de transporte. El documento cruzó datos y cifras del Plan Bici de la Secretaría de Movilidad del Distrito, entre otras fuentes. Según el informe, actualmente 835 mil habitantes usan la bicicleta para movilizarse, consolidándose la capital del país como la primera ciudad en Latinoamérica con mayor número de ciclorrutas, con más de 410 kilómetros actualmente. De estas vías, de acuerdo a la Secretaría de Movilidad del Distrito, el 89% están entre buen y óptimo estado. Solo el 11% necesitan trabajos de mantenimiento y adecuación.

En el ranking de las ciudades capitales que en la región cuentan con una adecuada infraestructura para el uso de este medio de transporte, además de Bogotá, se destacan
Rio de Janeiro, con 307 km; Lima (141); Ciudad de México (128); Quito (63); Belo Horizonte (52); La Paz (50); Guayaquil (30) y Guadalajara (18).

A nivel nacional, Bogotá también está muy lejos de Medellín, Cali y Barranquilla, que no tienen más 50 km de ciclorutas. “Estos números evidencian el compromiso de la capital del país con la movilidad sostenible”, dijo Sonia Meneses, autora de la investigación y profesora de la Facultad de Ingeniería de la Universidad Libre.

Respecto a los viajes en ‘bici’ por localidades, Suba (con más de 73.000 en el año), Engativá (64.500) y Bosa (62.000), son las zonas de la ciudad donde transitan más habitantes es este medio de transporte. Las demás –comentó Meneses– “tienen un porcentaje inferior al 5% en el uso de la bicicleta”.

Con relación a la cantidad de viajes diarios, la ciudad presentó un registro de 575.500 recorridos en ‘bici’ en 2015, según la última encuesta de movilidad hecha en el mismo año. Para 2018, de acuerdo a la investigación, este indicador supera los 850 mil viajes al día.

“Las localidades con más trayectos diarios son: Kennedy, 92.570; Suba, 73.397; Bosa, 67.077; Engativá, 64.500; Fontibón, 31.269; y Ciudad Bolívar, 25.593”, comentó Meneses.

Por distancias transitadas en bicicleta, el estudio confirmó que cerca de 1.500 viajes al día se hacen en menos de 3 km; 1.250, entre 3 y 5 km; y 800, de 5 a 7 km. Los demás se reparten en trayectos que van desde 8 a más de 17 km.

Al comparar el uso de los medios de trasporte en Bogotá, en recorridos menores a 5 km, se encontró que la bicicleta es el recurso de movilidad más utilizado con un 65%, seguido del vehículo particular 10%, taxis 10%, Transmilenio 8% y motos 7%.

En cuanto a los tiempos de los desplazamientos, el estudio reveló que el 89% se hacen en menos de 30 minutos; el 7% entre 51 minutos y 1 hora; y el 4% en 70 minutos o más.

“Por tiempos de viaje superiores a 15 minutos, la bicicleta ocupa tan solo el 4,5%; es superada por los buses (27%), los recorridos a pie (21%), el Transmilenio (17%), el carro particular (14%), las motocicletas y los taxis (5,5%)”, aclaró Meneses, quien reconoció que aún faltan esfuerzos para consolidar a la ‘bici’ como el principal medio de trasporte en Bogotá.
Respecto a los motivos de viaje, la mayoría de estos, cerca del 68%, se hacen por trabajo, 20% por estudio y 12% para encontrarse con otra persona. Por ocupación, el 36,6% de los biciusuarios son trabajadores dependientes, el 29,5% contratistas o independientes, el 17,9% estudiantes de colegio y el 16% universitarios.

4.3 Experiencia de registros de bicicleta a nivel internacional

Se hará mención de distintos programas usados a nivel mundial para la seguridad de bicicletas y biciusuarios:

- **Reino Unido**: *BikeRegister* es una iniciativa implementada en el Reino Unido en la cual el bici-usUARIO disfruta de una serie de beneficios, entre estos que la bicicleta sea un objetivo menos atractivo para los ladrones, y si es robada y recuperada por la Policía, su bicicleta puede ser fácilmente devuelta al propietario. En primer lugar, los datos se almacenan en la base de datos en línea de manera segura. En adición, las fuerzas de policía del Reino Unido tienen acceso seguro a la información. Y si se roban una bicicleta, pueden "marcarla" como robada en la base de datos, a través de la cuenta en línea. *BikeRegister* también proporciona protección para compradores y vendedores de bicicletas de segunda mano: El documento de propiedad (descargable a través de su cuenta) es su libro de registro y proporciona prueba de propiedad para cualquier comprador potencial. El registro de la bicicleta no tiene costo y ofrece los siguientes beneficios:

 - Registro de por vida en la base de datos *BikeRegister*.
 - Un registro para ser usado como prueba de propiedad
 - Acceso en línea seguro a su cuenta (BikeRegister The National Cycle Database, 2004)

- **Francia**: El BICYCODE es sistema de un único número marcado y estandarizado a nivel nacional (Francia) que permite la devolución de las bicicletas a sus propietarios en caso de robo. El objeto de BICYCODE es luchar contra el robo, posesión de bienes robados y la reventa ilegal de bicicletas en el país. De esta manera, busca aumentar
las condiciones de seguridad para incentivar el uso frecuente de la bicicleta en los desplazamientos diarios de los ciudadanos. Esta estrategia consiste en una base de datos segura gestionada por la FUB, una red de operadores de bicicletas en asociación con la policía, a través de la cual el registro BICYCODE permite incluir en la bicicleta un número único y estandarizado que tiene una referencia en una base de datos nacional francesa accesible en línea: www.bicycode.org. El Sistema BICYCODE es reconocido por el Estado Francés para la lucha contra el robo de bicicletas, y ha recibido el apoyado de los Ministerios de Medio Ambiente e Interior. (Bicycode Le marquage des vélos , 2014)

- **Colombia:** Cabe resaltar la experiencia de la página web BiciRegistro.co, la cual posee un conjunto de herramientas de verificación de la identidad personal de los propietarios y una base de datos que permite registrar el número y marca de las bicicletas, constituyéndose así en una comunidad informática de carácter gratuito destinada a combatir y reducir el comercio de bicicletas robadas o desaparecidas en el país. (Biciregistro.co, 2019)

4.4 Acciones del estado frente al hurto de bicicletas

El hurto de bicicletas y las constantes amenazas a la seguridad de los “bici-usuarios” se han convertido en el principal obstáculo para incentivar el uso de éste como el principal medio de transporte en las principales capitales del país. Pero a su vez, como en los grandes sucesos de la historia los problemas son el eje de las estrategias y oportunidades; por lo que dentro de esta crisis el gobierno se ha visto en la necesidad de generar garantías que mitiguen esta serie de infortunados sucesos.

La Ley 1811 de Octubre de 2016; que “tiene por objeto incentivar el uso de la bicicleta como medio principal de transporte en todo el territorio nacional; incrementar el número de viajes en bicicleta, avanzar en la mitigación del impacto ambiental que produce el tránsito automotor y mejorar la movilidad urbana” (Colombia, 2016); dentro sus artículos 4 y 6 dictan las disposiciones para los espacios públicos y dentro de los sistemas de transporte donde se hace énfasis en que en estas áreas deben contar con un número de
parqueaderos destinados a la demanda de usuarios, garantizando la seguridad y adecuados al uso destinado.

Aunque ya se garantizaban los espacios para las bicicletas fue necesario establecer el Sistema Único Distrital de Registro Administrativo Voluntario de Control y Marcación de Bicicletas, dicho sistema empezó a ser reglamentado con el Acuerdo 674 de 2017 del Concejo de Bogotá D.C. donde se instaura el sistema para la identificación, el control, el monitoreo y el mejoramiento de la seguridad de los bici usuarios en el distrito capital, con ello vino el Decreto 790 de 2018 del Alcalde Mayor que reglamenta el Acuerdo “En el marco de la estrategia de seguridad en contra del hurto de bicicletas y delitos derivados, se hace necesario reglamentar el Sistema Único Distrital de Registro Administrativo Voluntario de Bicicletas, como mecanismo para la identificación, control, monitoreo y mejoramiento de la seguridad de los ciclistas, que facilite realizar denuncias sobre hurtos de bicicletas y que brinde información cuantitativa y cualitativa relacionada con el uso de la bicicleta en el Distrito Capital, con el propósito de identificar las zonas inseguras y las de mayor accidentalidad vial de la ciudad. En cabeza de la Secretaría Distrital de Movilidad, entidad que contará con un término máximo de seis (6) meses a partir de la vigencia del presente decreto para implementar el Registro Bici Bogotá, entregará de manera gratuita por cada bicicleta, el dispositivo de identificación marcado con un serial de registro y realizará jornadas de registro y marcación dirigidas a la ciudadanía en espacios con gran aglomeración de ciclistas. Así mismo buscará generar sinergias con el sector privado para que desde allí se invite a usar el Registro Bici Bogotá.” Para finalmente emitir la Resolución 019 de 2019 de la Secretaría Distrital de Movilidad en el cual se definen los procedimientos, especificaciones, parámetros y características para la entrega y control del dispositivo. (Secretaría Jurídica Distrital, 2018)

Lo anterior a fin de dar cumplimiento al plan de desarrollo distrital “Bogotá Mejor Para Todos 2016 – 2020” donde se analizan los factores de riesgo y se determinan las acciones pertinentes para aminorarlos, entre estos el hurto a bicicletas.

La fuerza pública también ha aportado a la reducción y contención de las amenazas a los bici-usuarios, su programa “Policía en Bici” cuenta con alrededor de 220 uniformados distribuidos en los puntos de mayor afluencia brindando control y acompañamiento durante el día y la noche, de acuerdo al comunicado de la alcaldía el 16 de noviembre de
2017. Esta es una tarea de constante transformación y mejora, por ahora “Registra Tu Bici” es el mecanismo que ayudará a combatir el hurto y la comercialización de bicicletas robadas además de facilitar la devolución a sus dueños; este tipo de estrategias solo funcionan con una excelente dirección y seguimiento por lo que es necesario el aporte de todos.

4.5 Sistema de Posicionamiento Global

Se debe hacer un breve estudio acerca del GPS y su historia, el cual se detalla a continuación:

El sistema de posicionamiento global es un método de navegación que permite determinar la posición satelital las 24 Horas del día, en cualquier lugar del globo y en cualquier condición climatológica. Un receptor GPS es un aparato electrónico pequeño, utilizado por aquellos que viajan por tierra, mar o aire, dicho receptor utiliza las señales de radio para calcular su posición, la cual es facilitada como un grupo de números y letras que corresponden a un punto sobre un mapa. (Letham, 2001)

Aunque la invención del GPS se atribuye a los gobiernos de Francia y Bélgica, el sistema fue desarrollado e instalado por el Departamento de Defensa de los Estados Unidos, del que actualmente se encarga. El GPS funciona mediante una red de 27 satélites (24 operativos y 3 de respaldo) en órbita a 20.200 km sobre el globo terráqueo, con trayectorias sincronizadas para cubrir toda la superficie de la Tierra. Cuando se desea determinar una posición, el receptor que se utiliza para ello localiza automáticamente como mínimo tres satélites de la red, de los que recibe unas señales indicando la posición y el reloj de cada uno de ellos. Con base en estas señales, el aparato sincroniza el reloj del Sistema de Posicionamiento y calcula el retraso de las señales; es decir, la distancia al satélite. (Giménez & Ros, 2016)

Al Sistema Global de Navegación por Satélite lo componen:

- Segmento espacial: En el segmento espacial se encuentran 24 satélites con trayectorias sincronizadas para cubrir toda la superficie del globo terráqueo. Lo
equivalente a decir, repartidos 6 planos orbitales de 4 satélites cada uno. La energía eléctrica que requieren para su funcionamiento la adquieren a partir de dos paneles compuestos de celdas solares adosados a sus costados.

- **Segmento de control:** El segmento de control se refiere a una serie de estaciones terrestres, las cuales envían información de control a los satélites para controlar las orbitas y realizar el mantenimiento de toda la constelación. Se podría definir al segmento de control como las estaciones de rastreo automáticas que se distribuyen globalmente con la finalidad de monitorear las orbitas enviando señales satelitales de correcciones. Hay una estación principal, 4 antenas de tierra y 5 estaciones monitoras de seguimiento.

- **Segmento del usuario:** En este componente se hace referencia al instrumento en sí. El GPS es el conjunto de elementos (Software y Hardware) que permiten determinar la posición, velocidad y tiempo de un usuario, además de los parámetros necesarios adicionales que requiera. (Carvalza Servicios informáticos, 2017)

4.6 La Gestión del Alcance del Proyecto

La Gestión del Alcance del Proyecto incluye los procesos requeridos para garantizar que el proyecto incluya todo el trabajo requerido para completar el proyecto con éxito. Gestionar el alcance del proyecto se enfoca primordialmente en definir y controlar qué se incluye y qué no se incluye en el proyecto.

Se hará uso de los dos siguientes procesos de la Gestión del Alcance del Proyecto:

- **Recopilar Requisitos:** Es el proceso de determinar, documentar y gestionar las necesidades y los requisitos de los interesados para cumplir con los objetivos del proyecto.
- **Definir el Alcance:** Es el proceso de desarrollar una descripción detallada del proyecto y del producto.

Los requisitos han sido siempre una preocupación en la dirección de proyectos y siguen ganando más atención en la profesión. A medida que el entorno mundial se vuelve más complejo, las organizaciones están empezando a reconocer cómo utilizar el análisis de
negocios para obtener ventajas competitivas mediante la definición, gestión y control de las actividades de los requisitos. Las actividades de análisis de negocios pueden comenzar antes de que se inicie un proyecto y se asigne un director del proyecto. Según la Requirements Management: A Practice Guide (en inglés), el proceso de gestión de los requisitos comienza con una evaluación de las necesidades, que puede comenzar en la planificación de los portafolios, en la planificación del programa, o dentro de un proyecto específico.

La obtención, la documentación y la gestión de los requisitos de los interesados se llevan a cabo dentro de los procesos de Gestión del Alcance del Proyecto. Las tendencias y prácticas emergentes para la Gestión del Alcance del Proyecto incluyen, entre otras, un enfoque en la colaboración con los profesionales de análisis de negocios para:

- Determinar los problemas e identificar las necesidades de negocio;
- Identificar y recomendar soluciones viables para satisfacer esas necesidades;
- Obtener, documentar y gestionar los requisitos de los interesados a fin de cumplir con los objetivos del negocio y del proyecto; y
- Facilitar la implementación exitosa del producto, servicio o resultado final del programa o proyecto.

El proceso termina con el cierre de los requisitos, el cual transfiere el producto, servicio o resultado al destinatario a fin de medir, monitorear, realizar y mantener los beneficios a largo plazo. (Project Management Institute, 2017)

5. METODOLOGÍA

La presente es una investigación que se realiza de manera heterogénea aplicando métodos cualitativos, cuantitativos o mixtos, aplicando la investigación documental, así como la investigación de campo. El enfoque cuantitativo es secuencial y probatorio, cada una de las etapas que lo componen precede a la siguiente y no se puede eludir, aunque es posible redefinir alguna de las etapas. Utiliza la recolección de datos para probar hipótesis con base en la medición numérica y el análisis estadístico, con el fin de establecer pautas de comportamiento y probar teorías.
El enfoque cualitativo tiene como objetivo el estudio de los valores y fenómenos cuantitativos para establecer y fortalecer una teoría planteada. Se enfoca en lo subjetivo e individual desde una perspectiva humanística, mediante la interpretación, la observación, entrevistas y relatos. (Hernandez, 2013)

En primera instancia se realiza una investigación documental para evaluar los diferentes sistemas de seguridad para bicicletas existentes con el objetivo de validar que el sistema no esté siendo utilizado ya en la ciudad de Bogotá y analizar las ventajas y desventajas del sistema propuesto frente a los demás.

Posteriormente, se realiza la investigación de campo, la cual consiste en la definición de las variables que se desean medir, elaborar un instrumento de medición, que para este caso se ha optado por aplicar una encuesta, aplicar el instrumento de medición o encuesta a un grupo de personas específico que se ve afectada por la problemática abordada, y finalmente diagnosticar o evaluar los resultados para proponer un sistema de seguridad para bicicletas que cumpla con las expectativas de los potenciales usuarios. A partir de la aplicación de esta encuesta, se pretende conocer la percepción de los ciclistas urbanos n la ciudad de Bogotá frente a las problemáticas de la ciudad para utilizar este medio de transporte y su opinión respecto al sistema de seguridad propuesto.

Por último, se realiza la propuesta del sistema recolectando los requisitos para su implementación y se define el enunciado del alcance como etapa inicial al desarrollo del proyecto. Para esto se utilizarán herramientas y técnicas recomendadas dentro de la guía del PMBOK en su sexta edición, como el juicio de expertos, recopilación de datos y análisis de datos.

5.1 FASE I: Investigación Documental

La investigación documental consiste en la consulta de documentos tales como artículos, ensayos y documentos de proyectos ejecutados, entre otros.
5.1.1 Paso 1: Identificación de sistemas de seguridad existentes.

Los sistemas de seguridad se identifican a través de consultas vía internet en las distintas bases de datos dispuestas tanto por la universidad como externas, de igual forma se realiza investigación en sitios académicos que permiten reconocer que la información acerca de los sistemas es real y verídica, cabe resaltar que también se consultan páginas gubernamentales.

5.1.2 Paso 2: Análisis de ventajas y desventajas

Después de identificar los distintos sistemas de seguridad existentes se procede a realizar un comparativo entre las ventajas y desventajas de dichos sistemas.

5.1.3 Paso 3: Definición de requisitos

Al haber identificado las distintas ventajas y desventajas de los sistemas existentes se toma como base esta información para poder definir los diferentes requisitos que el sistema de seguridad para bicicletas debe cumplir.

5.2 FASE II: Investigación de Campo

La investigación de campo consiste en la recolección y análisis de datos por medio de una encuesta realizada a un grupo de personas específico que se ve afectada por la problemática abordada, para cumplir con los objetivos planteados en el presente documento.

5.2.1 Elaboración del instrumento

Para poder elaborar el instrumento de medición, que en este caso es una encuesta, es necesario identificar las distintas variables a evaluar y con estas se definen las distintas preguntas a realizar. Las preguntas están enfocadas en saber la percepción que tienen
los usuarios de bicicleta acerca de la seguridad y la respuesta por parte de las autoridades, además conocer si estos hacen uso de algún sistema de seguridad que ayude a evitar el robo de las bicicletas.

5.2.2 Recopilación de datos

La encuesta realizada se envía a distintos grupos de ciclistas, así como personas del común que usan su bicicleta de manera esporádica, esto a través de WhatsApp y correo electrónico.

5.2.3 Análisis de los datos

En un lapso determinado de tiempo establecido desde el momento en que se enviaron las encuestas se realiza el análisis de las respuestas obtenidas con el fin de identificar las distintas opiniones que hay acerca del uso de la bicicleta y la seguridad de los ciclistas. Este análisis se realiza a través del programa estadístico SPSS en el que se ingresas los datos obtenidos y se obtiene la información requerida.

5.3 Elaboración de la Propuesta

Con base en los resultados obtenidos de la encuesta y de la investigación de otros sistemas de seguridad existentes se realiza la propuesta del sistema de seguridad para bicicletas que será implementado en la ciudad de Bogotá.

5.3.1 Recopilación de los requisitos

Para la recopilación de requisitos se utilizarán algunas de las herramientas y técnicas propuestas por el PMBOK 6ª Edición bajo el marco del proceso “Recopilación de Requisitos”. Las herramientas a utilizar son:
• Juicio de expertos: Entrevistar a una empresa dedicada a la geolocalización en tiempo real de vehículos utilizando tecnología GPS y que actualmente opera desde la ciudad de Bogotá que contribuya con la recolección de requisitos en cuanto a infraestructura para el seguimiento satelital.

• Recopilación de datos: Recopilación de datos por medio de tormenta de ideas y grupos focales por parte de los integrantes del grupo investigador aprovechando la diversidad de conocimiento de cada uno dentro de su respectiva área de conocimiento; realización de la entrevista descrita en el numeral 5.2.

• Análisis de datos: Realizar el análisis de la documentación de referencia para la investigación, así como el análisis de los datos obtenidos en las fases anteriores descritas en los numerales 5.1 y 5.2.

• Representación de datos: Elaboración de un mapeo mental de los requisitos obtenidos como productos de las actividades anteriormente mencionadas. Como producto de este proceso se obtendrá la matriz de trazabilidad de requisitos la cual se utilizará como entrada para definir el alcance de la propuesta objeto de la presente investigación.

5.3.2 Definición del alcance

Para la definición del alcance se procede inicialmente por identificar la información de entrada necesaria adicional a la matriz de requisitos elaborada en el paso anterior.

Dentro de las entradas necesarias están los factores ambientales, el registro de supuestos y de riesgos y la información recolectada durante las fases I y II de la investigación.

Con esta información se procede por medio de las herramientas y técnicas recomendadas por el PMBOK 6ª Edición bajo el marco del proceso “Definir el Alcance” a la definición del alcance las cuales se definen a continuación:

• Juicio de expertos: Con el apoyo de un experto en desarrollo de aplicaciones móviles, se realiza la definición del alcance respecto al software necesario para la implementación del sistema.
• Análisis de datos: A partir de la recolección de los requisitos se procede a la estructuración del alcance identificando y diferenciando entre las necesidades del proyecto y los deseos del mismo. A partir de este análisis se obtiene como producto los requerimientos esenciales para el alcance.
• Análisis del producto: A partir del análisis de los requisitos y la ingeniería del sistema, se procede a desglosar el producto descomponiendo los requisitos de alto nivel al detalle necesario para definir el producto final.

Como salida del proceso se obtendrá el enunciado del alcance del alcance de manera estructurada identificando claramente la descripción detallada del producto, los entregables, los criterios de aceptación y las exclusiones del proyecto. (Institute, 2017)

5.3.3 Conclusiones y recomendaciones

Por último, de desarrollan las conclusiones y recomendaciones de la investigación dando las pautas necesarias para llevar el proyecto de implementación al siguiente nivel.

6. VARIABLES

Según Hernández, Fernández y Baptista (2014), una variable se define como una propiedad que puede fluctuar y cuya variación es susceptible a medirse u observarse y es un concepto que puede aplicarse a seres vivos, objetos, hechos y fenómenos, los cuales adquieren diversos valores respecto de la variable definida.

Las variables presentadas a continuación se han definido abordando como tema principal el efecto positivo o negativo de las personas (Bici-usuarios) que usan como medio de transporte la bicicleta en la ciudad de Bogotá, teniendo en cuenta elementos tales cómo los diferentes tipos de sistema de seguridad proporcionada para los ciclistas, el entorno del ciclista, su motivación y percepción sobre la situación actual en la ciudad de Bogotá.
En la tabla 1, se especifican las variables estudiadas a lo largo de la investigación y sus dimensiones.

Tabla 1. Variables y dimensiones del proyecto

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensión</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTIVACIÓN</td>
<td>Personal</td>
</tr>
<tr>
<td>PERCEPCIÓN</td>
<td>Personal</td>
</tr>
<tr>
<td>PREFERENCIA</td>
<td>Personal</td>
</tr>
<tr>
<td>USUARIO DE BICICLETA</td>
<td>Personal</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Para la investigación se han seleccionado las variables de motivación, percepción, preferencia y el usuario de bicicleta, donde las primeras tres variables son subjetivas dado que se trata de la visión de cada persona y la cuarta es una variable de medición objetiva al tratarse de datos descriptivos. En todos los casos la dimensión a ser analizada es la personal ya que el propósito de su medición es conocer el punto de vista de cada individuo.

6.1 Variable: Motivación

La variable de motivación está enfocada a analizar el factor que mayormente afecta a las personas que usan bicicleta en su actuar y pensar respecto al uso de la bicicleta como medio de transporte. El propósito es validar que la inseguridad que vive actualmente la ciudad es el factor determinante para que se utilice o no la bicicleta.

Indicadores como la malla vial, la seguridad y la contaminación, entre otras, contribuyen a mejorar el componente motivacional para que una persona haga uso constante de la bicicleta en la ciudad de Bogotá. Esta variable será medida a través de una encuesta cuantitativa, donde se relacionarán estos indicadores.

En la tabla 2, se presenta la dimensión bajo la cual se analiza la variable de motivación, los indicadores que se quiere medir y los ítems o preguntas que darán valor al indicador.
Tabla 2. Dimensiones, indicadores e ítems de la variable Motivación

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Indicadores</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>Seguridad</td>
<td>En una escala de 1 a 5, responda las siguientes preguntas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerando la seguridad (nivel delincuencia), ¿qué tan motivado se</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siente usted para usar la bicicleta como medio de transporte?</td>
</tr>
<tr>
<td></td>
<td>Malla Vial</td>
<td>En una escala de 1 a 5, responda las siguientes preguntas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerando el estado de la malla vial (ciclorutas), ¿qué tan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>motivado se siente usted para usar la bicicleta como medio de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transporte?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿En sus trayectos en bicicleta, hace uso de las ciclorutas?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿En caso de que su respuesta sea menor a 4, explique por qué?</td>
</tr>
<tr>
<td></td>
<td>Contaminación</td>
<td>Considerando la calidad del aire, ¿qué tan motivado se siente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>para usar la bicicleta como medio de transporte?</td>
</tr>
<tr>
<td></td>
<td>Sistema de Seguridad Propuesto</td>
<td>¿Cuánto estaría dispuesto en invertir en un sistema de seguridad?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Estaría de acuerdo en pagar una mensualidad para poder utilizar el</td>
</tr>
<tr>
<td></td>
<td></td>
<td>servicio de rastreo satelital?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Cuánto estaría dispuesto a pagar mensualmente por utilizar el servicio?</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

La dimensión de la variable es la personal dado que se está analizando una variable subjetiva cuya variación depende de la personalidad de cada individuo. Analizan cuatro indicadores: Seguridad, Malla vial, contaminación y sistema de seguridad propuesto.

Para las primeros tres indicadores se pretende establecer el nivel de motivación de cada uno y validar que la seguridad es el indicador de mayor impacto negativo lo cual sustenta la necesidad de proponer una solución que involucre este indicador.

Respecto al indicador del sistema de seguridad propuesto, se realizan tres preguntas enfocadas a determinar el nivel de motivación hacia el uso de un nuevo sistema de seguridad y que disposición existe por parte de los ciclistas a pagar por ella.
Todas las preguntas están formuladas para ser respondidas bajo una escala que permitirá realizar la comparación entre las mismas.

6.2 Variable: Percepción

La variable de percepción está enfocada a medir como perciben los ciclistas el entorno al cual están expuestos durante sus trayectos y las ventajas sobre la implementación del sistema propuesto. El propósito es entender la percepción del ambiente en cuanto a seguridad y validar los supuestos del sistema de seguridad respecto a su efectividad y aplicabilidad.

La percepción de cada ciclista que se tiene para el constante uso de la bicicleta se define como la impresión o idea que se tiene referente a indicadores tales como la seguridad y sistemas de seguridad propuestos en el mercado que contribuyen a una movilización segura, minimizando los casos de hurto y brindando confianza a los individuos que se deseen movilizarse más a menudo en bicicleta en la ciudad de Bogotá.

En la tabla 3, se presenta la dimensión, indicadores e ítems o preguntas bajo las cuales se mide la variable de percepción.

Tabla 3. Dimensiones, indicadores e ítems de la variable Percepción

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Indicadores</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>Seguridad Ciudadana</td>
<td>En una escala de 1 a 5, responda las siguientes preguntas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Qué tan segura considera usted la ciudad de Bogotá para movilizarse en bicicleta?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frente a un acto de inseguridad, ¿Qué tan eficaz cree usted que reacciona la policía?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Qué nivel de amenaza siente usted cuando hace uso de la bicicleta?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En caso de que su bicicleta fuera robada, ¿qué posibilidad cree que tendría de recuperarla?</td>
</tr>
<tr>
<td></td>
<td>Sistema de Seguridad Propuesto</td>
<td>¿Cree usted que el sistema de seguridad propuesto tiene ventajas frente a los sistemas convencionales?</td>
</tr>
<tr>
<td>Pregunta</td>
<td>Respuesta</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Cree usted que el sistema propuesto aumentaría la eficacia de las autoridades para recuperar su bicicleta en caso de hurto.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Cree usted que con el uso del sistema de seguridad propuesto se incrementaría la probabilidad de recuperar su bicicleta en caso de hurto?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿En su experiencia ha visto o a utilizado un sistema de seguridad similar o igual al propuesto?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Usar el sistema de seguridad propuesto incentivaría un uso mayor de la bicicleta?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿El dispositivo pesa aproximadamente 2 kilos, cree que afectaría su rendimiento en la bicicleta?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Con este sistema de seguridad, se sentiría más seguro al usar la bicicleta?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

La dimensión de la variable es la personal dado que se está analizando una variable subjetiva cuya variación depende de la percepción y experiencias de cada individuo.

Para esto, se analizan dos indicadores: Seguridad ciudadana y el sistema de seguridad propuesto.

El primer indicador mide la percepción del nivel de seguridad que hay en las vías respecto a hurtos. El segundo, mide la percepción en el cambio de la experiencia bajo el mismo entorno utilizando el sistema de seguridad.

Todas las preguntas están formuladas para ser respondidas bajo una escala que permitirá realizar la comparación entre las mismas.

6.3 Variable: Preferencia

La variable de preferencia está enfocada a medir que tipo de sistema de seguridad prefieren los usuarios para proteger sus bicicletas lo cual se determina con base en la eficiencia del sistema. El propósito es validar que el sistema propuesto es más eficiente y por lo tanto sería de mayor preferencia sobre un sistema convencional.
En la tabla 4, a continuación, se presenta la dimensión, indicadores e ítems o preguntas bajo las cuales se mide la variable de preferencia.

Tabla 4. Dimensiones, indicadores e ítems de la variable Preferencia

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Indicadores</th>
<th>Ítems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>Sistemas de Seguridad</td>
<td>En una escala de 1 a 5, responda las siguientes preguntas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Qué tan eficiente cree usted que es un sistema de seguridad convencional como candados, cadenas o guayas?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Qué tan eficiente cree usted que es un sistema de seguridad basado en tecnología GPS?</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

La dimensión de la variable es la personal ya que se está midiendo una percepción lo cual es una variable subjetiva y el resultado de la respuesta variará de acuerdo con la percepción experiencia y conocimiento de cada individuo.

Para esto, se analiza un solo indicador el cual es el sistema de seguridad propuesto. Este indicador mide en qué medida se considera más o menos eficiente el sistema propuesto respecto a un sistema convencional.

6.4 Variable: Usuario de Bicicleta

La variable “Usuario de Bicicleta”, es una variable descriptiva la cual ayudará a comprender las tendencias, preferencias, percepciones y motivaciones de acuerdo a ciertos grupos de personas que se definen por rangos de edad, genero, entre otros.

En la tabla 5, se presenta la dimensión, indicadores e ítems o preguntas bajo las cuales se mide esta variable.
Tabla 5. Dimensiones, indicadores e ítems de la variable Usuario de Bicicleta

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Indicadores</th>
<th>Ítems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>Genero</td>
<td>1. Hombre__ 2. Mujer__</td>
</tr>
<tr>
<td></td>
<td>Edad</td>
<td>1. 16 a 20 Años__ 2. 21 a 30 años__ 3. 31 a 40 años__ 4. 40 a 50 años__ 5. Más de 50 Años__</td>
</tr>
<tr>
<td></td>
<td>Frecuencia de uso Bicicleta</td>
<td>¿Cuántas veces a la semana usa su bicicleta?</td>
</tr>
<tr>
<td></td>
<td>Localidad</td>
<td>¿En qué localidad vive?</td>
</tr>
<tr>
<td></td>
<td>Rango de precio de la bicicleta</td>
<td>¿Cuál es el rango de precio de su bicicleta? 1. 0 a 500.000 pesos__ 2. 500.001 a 1.500.000 pesos__ 3. 1.500.001 a 3.000.000 pesos__ 4. Más de 3.000.001 pesos__</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Una vez más, la dimensión de la variable a medir es la personal por tratarse de la definición de los atributos personales de cada individuo encuestado. Esta variable se mide de manera objetiva dado que su propósito es identificar las características socio-demográficas de los encuestados y analizar los resultados por grupos identificando si hay diferencias significativas entre estos.

Para esto, se analizan cinco indicadores: genero, edad, frecuencia de uso de la bicicleta, zona de residencia y rango de precio de la bicicleta lo que se podría traducir en poder adquisitivo.

7. HIPÓTESIS

El instrumento de medición aplicado, la recolección de los datos y el análisis de los mismos permitirán confirmar o descartar las siguientes hipótesis:

- La seguridad ciudadana es el factor de mayor impacto que desmotiva la utilización de la bicicleta como medio de transporte en la ciudad de Bogotá.
- Los usuarios de bicicleta prevén ventajas en la utilización del sistema de seguridad propuesto.
- El sistema de seguridad propuesto es novedoso y no se ha implementado en la ciudad de Bogotá.
8. SISTEMAS DE SEGURIDAD PARA BICICLETAS

Existen diferentes sistemas de seguridad para bicicletas disponibles en el mercado los cuales constan de diferentes tecnologías y con rango de precio dependiendo la calidad de este.

Lo que todos estos sistemas tienen en común, es la prevención del robo cuando la bicicleta se encuentra estacionada. Los sistemas de seguridad para bicicletas en tránsito son limitados poco acostumbrados dado el elevado costo, complejidad, la percepción de su efectividad o el desconocimiento de estas alternativas.

A continuación, se describen algunos de los sistemas de seguridad disponibles al público, unos más utilizados que otros de acuerdo a facilidad de adquisición según el país donde se reside, costo y eficacia, haciendo énfasis es sus ventajas y desventajas.

Entre estos sistemas se incluyen algunos que son novedoso y que hasta ahora están tomando fuerza en el mercado.

8.1 Guayas y Cadenas de Seguridad

En el mercado existen diferentes tipos de guayas de seguridad para bicicletas. La diferencia principal radica en su calibre, tipo de seguro (llave o por combinación numérica) y la calidad de los materiales.

Dada la cantidad de variables que tiene este tipo de sistema, se puede encontrar en todos los rangos de precios. En la figura 1, se muestran algunos ejemplos de guayas.
Figura 1. Guayás y cadenas de seguridad

Dependiendo de su longitud, este sistema permite asegurar diferentes partes de la bicicleta, sin embargo, es la alternativa que tiene el mayor peso y al no tener una geometría ergonómica, en cuanto a su portabilidad puede volverse algo incómodo para el usuario.

Dependiendo de su calidad el precio puede oscilar entre 15.000 y 400.000 pesos colombianos.

8.2 Candados en U

Los candados en U son una alternativa muy popular entre los usuarios de bicicleta urbana, ya que algunos de los modelos ya incorporan un soporte especial para transportar de manera cómoda este dispositivo.

Este sistema cumple con la misma función de las cadenas o guayas, ya que su principio de seguridad se basa en asegurar el marco (y según el tamaño del candado también una de las ruedas) a una estructura existente.

Su característica principal, además de tener una geometría más cómoda para su transporte, es que tiene dos puntos de aseguramiento. Por lo tanto, en caso de intento de hurto, se dificulta su apertura aún más que un sistema con un seguro sencillo.

Sin embargo, esta misma geometría limita los puntos donde la bicicleta puede ser asegurada. En la figura 2 se muestra un ejemplo de este candado.
Dependiendo de su calidad y marca, el precio puede oscilar entre 50.000 y 400.000 pesos colombianos.

8.3 Candados Desplegables

Los candados desplegables son una mezcla entre los candados en U y las guayas a condados, tomando las ventajas de cada uno de estos sistemas anteriormente presentados.

Al ser desplegable, la portabilidad, la relación peso resistencia, su resistencia y su geometría lo hacen la una alternativa más atractiva frente a las dos alternativas anteriores.

En pocas palabras, tiene la flexibilidad de una guaya o cadena y la rigidez de un candado en U.

Su relación en precio, al igual que los demás sistemas, depende de la calidad del candado que se adquiera. Considerando un candado de buena calidad, su punto débil se encuentra en las bisagras las cuales deben ser de un material resistente y que prevenga su envejecimiento prematuro por oxidación y corrosión. En la figura 3 se muestra un ejemplo de este tipo de candado.
Figura 3. Candado desplegable

Dependiendo de su calidad y marca, el precio puede oscilar entre 80.000 y 400.000 pesos colombianos.

8.4 Candados para Cuadro

Estos candados por sí solos no son efectivos para proteger la bicicleta de un robo ya que solo sirven para bloquear la rueda trasera. Son más un complemento a las guayas o candados o también pueden ser de gran utilidad para una parada corta en la que no se pierda de vista la bicicleta ya que su aplicación es extremadamente rápida y sencilla, incluso se puede asegurar con una sola mano.

En cuanto a su portabilidad, son elemento que van sujetos a la misma bicicleta por lo que no hay que preocuparse por su transporte, peso o tamaño. En la figura 4 se presenta un ejemplo de este tipo de candado.

Fuente. www.abus.com
Figura 4. Candado de cuadro

Fuente. www.abus.com

Dependiendo de su calidad y marca, el precio puede oscilar entre 90.000 y 450.000 pesos colombianos.

8.5 Sistemas no convencionales

En el mercado también se pueden encontrar sistemas poco conocidos e incluso que se pueden sonar como novedosos aun cuando ya tienen tiempo en el mercado.

A continuación, se presentan dos sistemas poco convencionales que si bien no son competencia directa de los sistemas tradicionales pueden llamar la atención de los usuarios en busca de algo diferente.

8.5.1 Asiento-Candado Seatylock

Se trata de un asiento para bicicleta fácilmente desmontable que se convierte en un candado desplegable.

Una vez parqueada la bicicleta, se desmonta el asiento y de la parte inferior se despliega una estructura metálica con un único pin que abre utilizando una llave como si se tratara de un candado.
Este sistema es fabricado por una empresa Estadunidense el producto como tal está patentado, lo cual lo hace único en el mercado y no es común verlo en las calles de Bogotá. En la figura 5 se muestra una imagen del sistema.

Figura 5. Sistema de seguridad Seatylock

![Figura 5. Sistema de seguridad Seatylock](https://seatylock.com/)

Fuente. https://seatylock.com/

Este sistema tiene como principal característica que no requiere ser transportado individualmente ya que es parte de la bicicleta y a diferencia de cualquier otro sistema, tiene un valor agregado en cuanto al confort.

En cuanto a sus desventajas, se identifica es que el este sistema solo permite asegurar el marco y una de sus ruedas, lo cual deja partes de la bicicleta desprotegidas.

El costo de este sistema es de aproximadamente 300.000 pesos colombianos. Este costo no es alto si se compara con un candado desplegable común dadas sus características adicionales de confort y portabilidad.

8.5.2 Bicicletas Yerka

La marca Yerka, es una empresa chilena que ha desarrollado una bicicleta como ellos la denominan “anti-robo”. Se trata de una bicicleta a la cual se le puede desmontar parte del marco para usarlo como un candado. Una vez se ajusta la parte desmontable, el poste, reja o estructura a la cual se fije la bicicleta, queda en medio del marco imposibilitando su movimiento. En la figura 6 se ilustra su funcionamiento.
Adicionalmente, el diseño incorpora en las ruedas pernos de seguridad, los cuales solo se pueden soltar con un adaptador especial que viene suministrado con la compra de la bicicleta. Este sistema es análogo a los pernos de seguridad de un automóvil.

La marca ofrece diferentes estilos de bicicleta, sin embargo, si se quiere adquirir una de estas, se está limitado a los modelos disponibles en el momento.

El precio de esta bicicleta oscila entre 1.000.000 y 1.500.000 pesos colombianos, y solo se encuentra disponible para compra en Chile.

8.6 Sistemas con tecnología GPS

Dado el avance tecnológico, los sistemas GPS para bicicletas han tomado fuerza y aunque no es común verlos en Colombia, en otros países ya se están implementando.

A continuación, se hace una breve descripción de algunos de estos sistemas.

8.6.1 BikeSpike

Un sistema de localización anclado muy discreto que a simple vista parece un portabotellas, función que también cumple. Este sistema no solo monitoriza de manera constante donde está ubicada la bicicleta, a su vez cuenta con un sistema de detección
de accidentes, donde envía mensajes a contactos previamente configurados dando aviso de las coordenadas del percance.

El sistema combina la tecnología GPS con una aplicación para móviles Android e iOS que permite tener la bicicleta controlada en todo momento. Además, sus desarrolladores permiten múltiples personalizaciones. Por ejemplo, el software permite definir las zonas geográficas por las que un bici-usUARIO suele moverse, enviando un mensaje si la bicicleta se sale de esos límites. (Ciclosfera, 2014)

Figura 7. Sistema BikeSpike

![Sistema BikeSpike](https://www.ciclosfera.com/wp-content/uploads/2014/07/bikespiker.jpg)

8.7 Lock8

Este sistema es considerado un candado de bicicleta inteligente, está diseñado para alertar si algún individuo está intentando cortar la cerradura, este novedoso sistema tiene una sim integrada, que permite realizar el envío de notificaciones, una vez se intente vulnerar el candado también activará una alarma penetrante que alertará a las personas que se encuentran a la redonda, los intentos de robo logran gestionarse a través de una serie de soluciones innovadoras: una corriente eléctrica débil que se ejecuta constantemente a través del cable, un acelerómetro a bordo y un giroscopio que detecta cuándo se mueve la bicicleta mientras la cerradura todavía está enganchada; y un termómetro a bordo que detecta la presencia de antorchas de corte o nitrógeno líquido.
8.8 BitLock

Este sistema lanzado al mercado en 2014 por la empresa norte americana Mesh Motion Inc, ofrece un sistema que se activa por medio del bluetooth utilizando un teléfono inteligente como llave para su apertura.

Este candado permite detectar la presencia de cada bici-usuario en un radio mínimo de 1 metro de distancia. Bitlock también viene con una aplicación en la que se puede visualizar la ubicación exacta del candado, por lo que la bicicleta se encuentra localizada en todo momento. Además de proporcionar este sistema de seguridad la aplicación es capaz de supervisar la actividad del usuario y proporcionar datos y estadísticas como el número de kilómetros recorridos, las emisiones de CO2, e incluso las calorías quemadas.

una de las principales características a la que le apuesta esta compañía norte americana es al fácil acceso de este sistema de seguridad gracias a su bajo costo, 140 dólares.
Figura 9. Sistema Seguridad BitLock

8.9 Ventajas y Desventajas

A continuación, se presenta una tabla 6 un comparativo de los sistemas de seguridad presentados aplicando las siguientes convenciones:

+++ : Muy bueno
++ : Bueno
+ : Regular
- : Malo
N/A : No aplica

Tabla 6. Comparativo de los sistemas de seguridad

<table>
<thead>
<tr>
<th></th>
<th>Portabilidad</th>
<th>Efectividad</th>
<th>Instalación</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seatylock</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Guaya</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Cadena</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Candado U</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Candado Desplegable</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Sistema de seguridad Propuesto</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

Fuente. Elaboración a partir de (ABUS - Técnicas de Seguridad, 2018)
Para definir la ventajas y desventajas entre los diferentes sistemas de seguridad existentes en el mercado y el sistema prepuesto, se han planteado 4 variables principales que los definen: portabilidad, efectividad, instalación y costo. El balance entre estas variables es lo que define la eficiencia del sistema.

La portabilidad es una de las variables que debe ser tenida en cuenta principalmente porque los usuarios de bicicleta tienen una capacidad de carga baja, y no es deseable ocupar el poco espacio disponible en cargar con un dispositivo de seguridad. Considerando que el sistema propuesto va soldado al marco de la bicicleta, se tiene una ventaja significativa sobre otros sistemas y es comparable con el Seatylock y los candados de cuadro los cuales son sistemas que también hacen parte de la bicicleta.

En cuanto a la efectividad, determinar que un sistema sea 100% efectivo es poco viable. Todo sistema de seguridad tiene puntos débiles y puede ser transgredido con la herramienta y el tiempo adecuado. Sin embargo, el sistema propuesto está basado el aviso de robo y la facilitación de recuperar la bicicleta al tener un dispositivo de rastreo en él. Si bien el punto débil del sistema propuesto es que la bicicleta puede ser fácilmente hurtada, lo que hace efectivo el sistema es que el ladrón no puede ocultar la bicicleta y su ubicación estará visible siempre que el dispositivo siga activo.

La variable de instalación tiene en cuenta que tan fácil o cómoda es la instalación del dispositivo. En este aspecto el sistema propuesto al igual que los candados de cuadro son los claros ganadores ya que se pueden manipular incluso con una sola mano. Los demás sistemas requieren de mayor habilidad y tiempo.

Por último, se tiene la variable de costo. Esta variable es la más compleja ya que dependiendo de valor del dispositivo, las variables anteriormente mencionadas pueden perder relevancia hasta el punto que sea el costo el único determinante para seleccionar un sistema. Para este caso el sistema propuesto tiene una desventaja al requerir de un pago mensual para poder utilizar la localización GPS y el envío de estos datos al celular móvil del propietario.
8.10 Casos de Éxito en Colombia de Sistemas de Seguridad con Tecnología GPS

En Colombia de acuerdo a las cifras de robo de bicicletas, algunos bici-usuarios han optado por hacer uso de diferentes sistemas de seguridad GPS que brindan monitoreo constante de sus bicicletas, entre los que se encuentran: GPS Bicicleta luz trasera, la cual oscila entre los $ 350.000 y $ 450.000 Pesos/Moneda colombiana, la mayoría de bici-usuarios la usan ya que no está visible ningún componente que pueda levantar alguna sospecha y por su fácil accesibilidad, ya que está la encuentran en principales almacenes de bicicletas o tiendas online, también porque ésta ofrece el servicio de envío de mensajes SMS cuando está siendo manipulada gracias a su chip integrado 3GSM.

Por otra parte algunas personas prefieren contratar el servicio de alquiler de bicicletas eléctricas en la ciudad de Bogotá, este último servicio lo brindan compañías privadas, las cuales incorporan un candado inteligente con sistema de posicionamiento global (GPS) como el caso del emprendimiento colombiano MUVO, una aplicación diseñada para el alquiler de bicicletas de pedaleo asistido, esta aplicación permite el bloqueo y desbloqueo del candado a través de tecnología bluetooth del móvil, escaneando previamente un código QR. A partir de este momento el usuario puede iniciar el recorrido según su ruta de destino, luego del desplazamiento se calcula la distancia recorrida y el valor a pagar, costo que es deducible de su tarjeta de crédito. Este sistema de transporte ha tenido gran acogida por parte de la ciudadanía Bogotana.

Es importante anotar que una de las ventajas que brinda este sistema es la incorporación del candado inteligente que cuenta con dos funciones principales, una de ellas es la de encapsular los elementos electrónicos del dispositivo, es decir el bloqueo y desbloqueo del candado y la segunda que permite el control y monitoreo de la ubicación en tiempo real de la bicicleta.

9. INSTRUMENTOS DE RECOLECCIÓN DE DATOS

El instrumento diseñado para la recolección de datos primarios en esta investigación es la encuesta ya que permite obtener y elaborar datos de modo rápido y eficaz. También da la posibilidad de obtener información sobre un amplio abanico de preguntas a la vez.
9.1 La encuesta

Se define la encuesta, como “una técnica que utiliza un conjunto de procedimientos estandarizados de investigación mediante los cuales se recoge y analiza una serie de datos de una muestra de casos representativa de una población o universo más amplio, del que se pretende explorar, describir, predecir y/o explicar una serie de características” (Garcia, Ibañez, & Alvira, 1993).

Para (Sierra, 1994), la observación por encuesta, que consiste igualmente en la obtención de datos de interés sociológico mediante la interrogación a los miembros de la sociedad, es el procedimiento sociológico de investigación más importante y el más empleado. Entre sus características se pueden destacar las siguientes:

1. La información se obtiene mediante una observación indirecta de los hechos, a través de las manifestaciones realizadas por los encuestados, por lo que cabe la posibilidad de que la información obtenida no siempre refleje la realidad.
2. La encuesta permite aplicaciones masivas, que mediante técnicas de muestreo adecuadas pueden hacer extensivos los resultados a comunidades enteras.
3. El interés del investigador no es el sujeto concreto que contesta el cuestionario, sino la población a la que pertenece; de ahí, como se ha mencionado, la necesidad de utilizar técnicas de muestreo apropiadas.
4. Permite la obtención de datos sobre una gran variedad de temas.
5. La información se recoge de modo estandarizado mediante un cuestionario lo que facilita hacer comparaciones intergrupales. (Sierra, 1998)

En la planificación de una investigación utilizando la técnica de encuesta se pueden establecer las siguientes etapas:

- Identificación del problema.
- Determinación del diseño de investigación.
- Especificación de las hipótesis.
- Definición de las variables.
9.1.1 Diseño del cuestionario

Un cuestionario se define como el “documento que recoge de forma organizada los indicadores de las variables implicadas en el objetivo de la encuesta” (Rojas, Fernández, & Pérez, 1998). De esto se entiende que la palabra cuestionario es el formulario que contiene las preguntas que son dirigidas a los sujetos objeto de estudio.

El objetivo que se persigue con el cuestionario es traducir variables empíricas, sobre las que se desea información, en preguntas concretas capaces de suscitar respuestas fiables, válidas y susceptibles de ser cuantificadas. El guion orientativo del que se diseña el cuestionario lo constituyen las hipótesis y las variables previamente establecidas. En esta fase preliminar, antes de la redacción de las preguntas, se debe tener en cuenta las características de la población y el sistema de aplicación que va a ser empleado, ya que estos aspectos tendrán una importancia decisiva a la hora de determinar el número de preguntas que deben componer el cuestionario, el lenguaje utilizado, el formato de respuesta y otras características que puedan ser relevantes.

9.1.2 Tipos de preguntas

En el cuestionario se pueden encontrar distintos tipos de preguntas según la contestación que admitan del encuestado, de la naturaleza del contenido y de su función (VINACUA, 1989), para la investigación en mención se hizo uso de los tipos de pregunta de la siguiente manera:
• Según la contestación del encuestado, las preguntas fueron de elección múltiple y de estimación ya que se ofrecen como alternativa respuestas graduadas en intensidad sobre el punto de información deseado.
• Según la naturaleza del contenido, las preguntas del cuestionario hablan sobre cuestiones concretas, opiniones, nivel de información, actividades, aspiraciones, motivos o razones.
• Según su función, se pueden encontrar preguntas que tienen funciones especiales, dentro de éstas se utilizaron las siguientes:

 ➢ Preguntas de consistencia y control: las preguntas de consistencia tienen como función comprobar la congruencia de las respuestas del entrevistado.
 ➢ Preguntas de aflojamiento y acceso. Este tipo de preguntas se sitúan al comienzo del cuestionario. (Casas Anguita, Repullo Labrador, & Donado Campos, 2003)

9.1.3 Extensión del cuestionario

Respecto a la extensión, el número de preguntas realizadas son 26 con fin de ser contestadas en promedio en 15 minutos. El cuestionario incluyó unas instrucciones sencillas para su correcta cumplimentación.

9.1.4 Formato definitivo

El formato definitivo del cuestionario incluyó los siguientes apartados:

• Identificación del organismo que lleva a cabo la investigación.
• Título completo del estudio en el que se enmarca el cuestionario.
• Declaración explícita de que la información que se facilite va a ser tratada con máxima confidencialidad.
• Espacio para la fecha de cumplimentación del cuestionario (dato especialmente relevante en estudios longitudinales).
• Instrucciones para la adecuada cumplimentación.
9.2 Análisis documental

El análisis documental es un conjunto de operaciones encaminadas a representar un documento y su contenido bajo una forma diferente de su forma original, con la finalidad de posibilitar su recuperación posterior e identificarlo.

La finalidad última del análisis documental es la transformación de los documentos originales en otros secundarios, instrumentos de trabajo, identificativos de los primeros y gracias a los cuales se hace posible tanto la recuperación de éstos como su difusión.

Para la investigación de este trabajo se hizo análisis documental tomando como base los conceptos de:

- Seguridad ciudadana
- Seguridad para bicicletas
- Sistema de seguridad para bicicletas
- Sistema de seguridad usando GPS

Luego se realizó un filtro con la información de fuentes confiables, para luego extraer y tomar la información más importante de cada uno de los artículos estudiados.

Por último, con la información filtrada y los aportes más importantes se elaboran nuevos apartados que darán solides a la investigación tratada a lo largo del documento.

10. MUESTREO

Por población se entiende “el conjunto de todos los elementos que cumplen ciertas propiedades, entre las cuales se desea estudiar un determinado fenómeno”.

La idoneidad de la muestra seleccionada dependerá de su representatividad, es decir, de su capacidad para reproducir las mismas características de la población de la que procede; si la muestra no es representativa de la población se dice que es sesgada.
Se denominan técnicas de muestreo a los procedimientos que aseguran que los individuos que componen la muestra son representativos de la población de la que proceden. (Azorín Poch & Sánchez, 1986). A continuación, se hace énfasis de la técnica usada en esta investigación:

- **Muestreo aleatorio simple**: El muestreo es aleatorio simple si garantiza que todos los componentes de la población tienen las mismas probabilidades de formar parte de la muestra y cada una de las posibles muestras del mismo tamaño tiene la misma probabilidad de ser escogida. Para realizar este tipo de muestreo es necesario disponer de un listado de todas las unidades que componen la población, lo que supone importantes dificultades si la población es amplia y no se dispone de bases de datos completas.

Se decide realizar muestreo aleatorio simple debido a que se eligieron listas de contactos de personas pertenecientes a grupos de ciclistas recurrentes y no recurrentes. Es decir que todos los miembros pertenecientes a estas listas cumplen los criterios para poder aplicar el muestreo aleatorio simple.

Al elegir estas listas y determinar que las personas pertenecientes a estas cumplen los criterios a evaluar, la encuesta es enviada por medio de un link, a través de correo electrónico y la aplicación WhatsApp, debido a la facilidad y al acceso oportuno que estos dos medios de comunicación ofrecen.

Por otro lado, vale aclarar que las listas en las cuales se encuentran los encuestados hacen parte de listas creadas por ciclistas y personas del común que usan su bicicleta tanto como medio de transporte como un hobby.

11. RESULTADOS

Después de realizar la encuesta y aplicarla al grupo de personas elegidos en este caso 70 personas del común que hacen uso de la bicicleta tanto como medio de
transporte como de manera esporádica los fines de semana, se obtuvo los siguientes resultados, ver todos los resultados de la encuesta en Anexo A:

- Información personal
 De la información obtenida 40 de las personas encuestadas son hombres y 30 mujeres; el promedio de edad de estas personas que usan bicicleta es entre 21 y 40 años. El 35,7% de ellas hacen uso de la bicicleta una vez a la semana y el 15,7% hacen uso de la bicicleta 4 veces por semana.

11.1 Variable de Motivación

Figura 10. Considerando la seguridad (nivel delincuencia), ¿qué tan motivado se siente usted para usar la bicicleta como medio de transporte?

![Gráfico de barras]

Fuente. Elaboración propia.

Con un total de 70 encuestados, 22 de ellos indican que no se encuentran nada motivadas a usar bicicleta como medio de transporte, 29 personas indican que su grado de motivación es medio para usar la bicicleta como medio de transporte.

Al observar los resultados se identifica que solo 4 personas de las 70 encuestas se encuentran muy motivadas a usar su bicicleta como medio de transporte teniendo como premisa la inseguridad (nivel de delincuencia), es evidente que este es un factor determinante a la hora de elegir a la bicicleta como medio de transporte diario.
Figura 11. Considerando la calidad del aire, ¿qué tan motivado se siente para usar la bicicleta como medio de transporte?

![Gráfico de barras]

Fuente. Elaboración propia

Con un total de 70 encuestados, solo el 12,9% de los encuestados dice sentirse motivado a usar la bicicleta considerando la calidad del aire.

Es evidente que casi el 80% de los encuestados no se sienten motivados al usar la bicicleta como medio de transporte debido a las malas condiciones del aire y los problemas que esto causa para su salud.

Figura 12. Considerando el estado de la malla vial (ciclorutas), ¿Qué tan motivado se siente para usar la bicicleta como medio de transporte?

![Gráfico de barras]

Fuente. Elaboración propia

Con un total de 70 encuestados para el 38,6% es irrelevante el estado de las ciclorutas para usar la bicicleta como medio de transporte.
Es evidente que las personas encuestadas se sienten poco motivadas a usar su bicicleta debido a las malas condiciones en las que se encuentran las ciclorutas.

11.2 Variable de Percepción

- Seguridad Ciudadana

A continuación, se observarán los resultados de las preguntas realizadas para la variable percepción, haciéndose énfasis en la seguridad ciudadana.

Figura 13. ¿Qué tan segura considera usted la ciudad de Bogotá para movilizarse en bicicleta?

Fuente. Elaboración propia

Con un total de 70 encuestados, 26 de ellos indican que consideran a Bogotá como una ciudad muy insegura para transportarse en bicicleta, seguido por 25 de ellas que consideran que Bogotá es insegura para movilizarse en bicicleta.

Al observar los resultados se identifica que solo 1 persona de las 70 encuestadas considera a Bogotá como una ciudad segura para movilizarse en bicicleta, es evidente que la percepción de seguridad que existe en Bogotá no beneficia en nada este tipo de transportes alternativos.
Figura 14. Frente a un acto de inseguridad, ¿qué tan eficaz cree usted que reacciona la policía?

![Gráfico de barras](image)

Fuente. Elaboración propia

Con un total de 70 encuestados, 37 de ellos indican que la reacción de la policía es ineficaz frente a los actos de inseguridad que ocurren en la ciudad.

Al observar los resultados se identifica que solo 1 persona de las 70 encuestadas considera que el actuar de la policía frente a estos actos de inseguridad es eficaz, lo cual hace evidente que el tema de seguridad en la ciudad no está siendo tratado de la manera más óptima.

Figura 15. En caso que su bicicleta fuera robada, ¿qué posibilidad cree usted que tendría de recuperarla?

![Gráfico de barras](image)

Fuente. Elaboración propia

Con un total de 70 encuestados, 53 de ellos consideran que la posibilidad de recuperar su bicicleta robada es muy baja.
Es evidente que la probabilidad que se tiene de recuperar algo que fue robado se hace casi remota, esto debido a la ineficiente reacción en el momento en que ocurren los hechos.

- **Sistema de seguridad propuesto**

A continuación, se observarán los resultados de las preguntas realizadas para la variable percepción, haciéndose énfasis en el sistema de seguridad propuesto.

Figura 16. ¿Cree usted que el Sistema propuesto aumentaría la eficacia de las autoridades para recuperar su bicicleta en caso de hurto?

![Bar Chart]

Fuente. Elaboración propia.

Con un total de 70 encuestados, en promedio el 55% creen que al usar un sistema de seguridad como el propuesto aumentaría la probabilidad de recuperar su bicicleta si esta fuera robada.

Es importante resaltar que las personas encuestadas apoyan la gestión que desarrollaría el sistema de seguridad, siendo eficaz a la hora de rastrear y recuperar una bicicleta robada.
Figura 17. ¿Cree usted que con el uso del Sistema de seguridad propuesto se incrementaría la probabilidad de recuperar su bicicleta en caso de hurto?

![Gráfico de barras]

Fuente. Elaboración propia

Con un total de 70 encuestados, 46 de ellos consideran que, al implementar el sistema de seguridad propuesto, aumenta la posibilidad de recuperar su bicicleta en caso de ser robada.

Al analizar el gráfico es evidente que la mayoría de encuestados están de acuerdo en afirmar que si se implementa un sistema de estas características para monitorear las bicicletas su recuperación sería posible e incluso el intento de robo también disminuiría.

Figura 18. ¿Usar el Sistema de seguridad propuesto incentivaría un uso mayor de la bicicleta?

![Gráfico de barras]

Fuente. Elaboración propia

55 encuestados consideran que al implementar este tipo de sistema se incentivaría al uso de bicicleta como medio de transporte diario.
Se observa que el 78,6 % de encuestados creen que implementando un sistema de seguridad como el propuesto a lo largo de la investigación se incrementaría el uso de la bicicleta como medio de transporte.

Figura 19. ¿Con este Sistema de seguridad, se sentiría más seguro al usar la bicicleta?

El 38,6 % de personas encuestadas afirman que se sentirían más seguras al contar con un sistema de seguridad especial para bicicletas, solo el 5,7% consideran que no se sentirían seguros.

Es evidente que la mayoría de encuestados se sentirían más seguros si tuvieran un sistema de seguridad como el propuesto de manera que esto hace posible el estudio de factibilidad del mismo.
11.3 Variable de Preferencia

Figura 20. ¿Qué tan eficiente cree usted que es un Sistema de seguridad basado en tecnología GPS?

![Bar Chart](image)

Fuente. Elaboración propia

Con un total de 70 encuestados solo 3 de ellos creen que un Sistema de seguridad que use tecnología GPS no es eficiente. Es evidente que la mayoría de encuestados creen que el sistema de seguridad basado en GPS sería eficiente, logrando los objetivos propuestos.

11.4 Análisis de Confiabilidad de los Datos

El programa estadístico utilizado para medir la confiabilidad es el R i386 3.5.0 por medio del cual se calcula el coeficiente Alfa de Cronbach. Dicho coeficiente permite identificar qué tan confiables son los datos obtenidos del instrumento de medición aplicado. La interpretación de los resultados del coeficiente se realiza por medio de la siguiente escala (George & Mallery, 2016):

- Coeficiente alfa >.9, significa que la confiabilidad es excelente.
- Coeficiente alfa >.8, significa que la confiabilidad es buena.
- Coeficiente alfa >.6, significa que la confiabilidad es cuestionable.
- Coeficiente alfa >.5, significa que la confiabilidad es pobre.
• Coeficiente alfa <.5, significa que la confiabilidad es inaceptable

El cálculo de la confiabilidad se realiza solo para las variables de motivación y percepción.

La confiabilidad de la variable de preferencia no se calcula dado que solo se tiene dos preguntas y el análisis se realiza mediante la correlación directa de estas.

Respecto a la variable del usuario de bicicleta, no se realiza en análisis de confiabilidad ya que son datos descriptivos y no se encuentran medidos bajo una misma escala.

11.4.1 Variable de Motivación

En el cálculo del coeficiente Alfa de Cronbach para la variable motivación, se realiza con un muestreo 4 preguntas y 70 datos por cada pregunta, para un total de 280 datos.

Las preguntas del instrumento de medición que hacen referencia a la variable de motivación son:

V1. Considerando la seguridad (nivel delincuencia), ¿qué tan motivado se siente usted para usar la bicicleta como medio de transporte?
V2. Considerando la calidad del aire, ¿Qué tan motivado se siente para usar la bicicleta como medio de transporte?
V3. Considerando el estado de la malla vial (ciclorutas), ¿Qué tan motivado se siente usted para usar la bicicleta como medio de transporte?
V4. ¿En sus trayectos en bicicleta, hace uso de las ciclorutas? En caso de que su respuesta sea menor a 4, ¿explique por qué?

Cada pregunta ha sido identificada en el programa con las siglas V1, V2, V3 y V4 para mayor facilidad del análisis como se muestra en la figura a continuación.
Para las cuatro preguntas ingresadas en el programa estadístico el coeficiente Alfa de Cronbach calculado es de 0,5731. De acuerdo a la escala de interpretación, este resultado significa que la confiabilidad de los datos es pobre.

Sin embargo, se identifica que la pregunta que menos correlación tiene dentro del grupo es la pregunta V4. Eliminar esta pregunta del análisis sube la confiabilidad de los datos a 0,7271 lo cual significa una confiabilidad cuestionable.

11.4.2 Variable de Percepción

En el cálculo del coeficiente Alfa de Cronbach para la variable percepción, se dividen las preguntas en dos grupos, uno que hace referencia a la percepción de la seguridad ciudadana y otro que analiza la percepción sobre el sistema de seguridad propuesto.

Para la percepción de la seguridad ciudadana, se realiza un muestreo de 4 preguntas y 70 datos por cada pregunta, para un total de 280 datos.

Las preguntas del instrumento de medición que hacen referencia a la variable de percepción de la seguridad ciudadana son:

V1. ¿Qué tan segura considera usted la ciudad de Bogotá para movilizarse en bicicleta?

V2. Frente a un acto de inseguridad, ¿qué tan eficaz cree usted que reacciona la policía?
V3. ¿Qué nivel de amenaza siente usted cuando hace uso de la bicicleta?
V4. ¿En caso que su bicicleta fuera robada, ¿qué posibilidad cree usted que tendría de recuperarla?

Cada pregunta ha sido identificada en el programa con las siglas V1, V2, V3 y V4 para mayor facilidad del análisis como se muestra en la figura a continuación.

Figura 22. Confiabilidad de la Variable Percepción relacionada a la Seguridad Ciudadana

```
## Alpha reliability = -0.0199
## Standardized alpha = 0.1174
##
## Reliability deleting each item in turn:
## Alpha Std.Alpha r(item, total)
## V1 -0.1436 -0.0921 0.0630
## V2 -0.5496 -0.3887 0.2847
## V3 0.5006 0.4752 -0.2454
## V4 -0.0601 0.0814 0.0309
```

Fuente. Elaboración propia

Para las cuatro preguntas ingresadas en el programa estadístico el coeficiente Alfa de Cronbach calculado es de -0,0199. De acuerdo a la escala de interpretación, este resultado significa que la confiabilidad de los datos es inaceptable.

Sin embargo, se identifica que la pregunta que menos correlación tiene dentro del grupo es la pregunta V3. Eliminar esta pregunta del análisis sube la confiabilidad de los datos a 0,5006 lo cual significa una confiabilidad cuestionable.

Para la percepción del sistema de seguridad propuesto, se realiza un muestreo de 6 preguntas y 70 datos por cada pregunta, para un total de 280 datos.

Las preguntas del instrumento de medición que hacen referencia a la variable de percepción del sistema de seguridad propuesto son:
V1. ¿Cree usted que el sistema de seguridad propuesto tiene ventajas frente a los sistemas convencionales?

V2. ¿Cree usted que el sistema propuesto aumentaría la eficacia de las autoridades para recuperar su bicicleta en caso de hurto?

V3. ¿Cree usted que con el uso del sistema de seguridad propuesto se incrementaría la probabilidad de recuperar su bicicleta en caso de hurto?

V4. ¿Usar el sistema de seguridad propuesto incentivaría un uso mayor de la bicicleta?

V5. ¿El dispositivo pesa aproximadamente 2 kilos, cree que afectaría su rendimiento en la bicicleta?

V6. ¿Con este sistema de seguridad, se sentiría más seguro al usar la bicicleta?

Cada pregunta ha sido identificada en el programa con las siglas V1, V2, V3, V4, V5 y V6 para mayor facilidad del análisis como se muestra en la figura a continuación.

Figura 23. Confiabilidad de la Variable Percepción relacionada al Sistema de Seguridad Propuesto

```
## Alpha reliability = 0.7693
## Standardized alpha = 0.7812
##
## Reliability deleting each item in turn:
##   Alpha Std.Alpha r(item, total)
##   V1 0.7144 0.7312 0.5885
##   V2 0.6985 0.7185 0.6492
##   V3 0.6532 0.6731 0.8132
##   V4 0.7122 0.7206 0.6332
##   V5 0.8614 0.8638 -0.0012
##   V6 0.7219 0.7349 0.5649
```

Fuente. Elaboración propia

Para las seis preguntas el ingresadas en el programa estadístico el coeficiente Alfa de Cronbach calculado es de 0,7693. De acuerdo a la escala de interpretación, este resultado significa que la confiabilidad de los datos es cuestionable.
Sin embargo, se identifica que la pregunta que menos correlación tiene dentro del grupo es la pregunta V5. Eliminar esta pregunta del análisis sube la confiabilidad de los datos a 0,8614 lo cual significa una confiabilidad de los datos buena.

11.5 Resultados de la correlación

En el análisis de correlación relaciona preguntas que asocian variables mediante un patrón predecible para un conjunto, grupo o población que se enfoquen en el mismo patrón. (Hernández, Fernández, & Baptista, 2010).

El análisis de correlación se realizará por medio del método de Spearman ya que se tiene preguntas de tipo categóricas, las cuales están en una escala de satisfacción de uno a cinco, siendo uno muy insatisfecho y cinco muy satisfecho. Se plantea la matriz de correlacionalidad y se realiza el análisis de correlación por medio del programa de probabilidad R i386 3.5.0. La correlacionalidad se evalúa de -1 a 1. Siendo la correlación directamente proporcional con valores cercanos a 1, he inversamente proporcional con valores cercanos a -1.

11.5.1 Motivación

En la construcción de la matriz de correlación para la motivación se utilizan 4 preguntas con 70 respuestas para cada pregunta, y se encuentra identifican a continuación:

V1. Considerando la seguridad (nivel delincuencia), ¿qué tan motivado se siente usted para usar la bicicleta como medio de transporte?
V2. Considerando la calidad del aire, ¿Qué tan motivado se siente para usar la bicicleta como medio de transporte?
V3. Considerando el estado de la malla vial (ciclorutas), ¿Qué tan motivado se siente usted para usar la bicicleta como medio de transporte?
V4. ¿En sus trayectos en bicicleta, hace uso de las ciclorutas? En caso de que su respuesta sea menor a 4, ¿explique por qué?
Tabla 7. Correlación de la motivación

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>0.493905240</td>
<td>0.36933233</td>
<td>-0.039197939</td>
</tr>
<tr>
<td>V2</td>
<td>0.493905240</td>
<td>1</td>
<td>0.43530998</td>
<td>0.007948019</td>
</tr>
<tr>
<td>V3</td>
<td>0.36933233</td>
<td>0.43530998</td>
<td>1</td>
<td>0.05878303</td>
</tr>
<tr>
<td>V4</td>
<td>-0.039197939</td>
<td>0.007948019</td>
<td>0.05878303</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia

11.5.2 Percepción

a) En la construcción de la matriz de correlación de la percepción relacionada a la seguridad ciudadana se utilizan 4 preguntas con 70 respuestas para cada pregunta, y se encuentra identificado a continuación:

V1. ¿Qué tan segura considera usted la ciudad de Bogotá para movilizarse en bicicleta?
V2. Frente a un acto de inseguridad, ¿qué tan eficaz cree usted que reacciona la policía?
V3. ¿Qué nivel de amenaza siente usted cuando hace uso de la bicicleta?
V4. ¿En caso que su bicicleta fuera robada, ¿qué posibilidad cree usted que tendría de recuperarla?

Tabla 8 Correlación de la percepción relacionada a la Seguridad Ciudadana

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>0.4111934</td>
<td>-0.3379357</td>
<td>0.1019651</td>
</tr>
<tr>
<td>V2</td>
<td>0.4111934</td>
<td>1</td>
<td>-0.1835013</td>
<td>0.2084975</td>
</tr>
<tr>
<td>V3</td>
<td>-0.3379357</td>
<td>-0.1835013</td>
<td>1</td>
<td>-0.1125468</td>
</tr>
<tr>
<td>V4</td>
<td>0.1019651</td>
<td>0.2084975</td>
<td>-0.1125468</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia

b) En la construcción de la matriz de correlación de la percepción relacionada los sistemas de seguridad se utilizan 6 preguntas con 70 respuestas para cada pregunta, y se encuentra identificado a continuación:
V1. ¿Cree usted que el sistema de seguridad propuesto tiene ventajas frente a los sistemas convencionales?

V2. ¿Cree usted que el sistema propuesto aumentaría la eficacia de las autoridades para recuperar su bicicleta en caso de hurto?

V3. ¿Cree usted que con el uso del sistema de seguridad propuesto se incrementaría la probabilidad de recuperar su bicicleta en caso de hurto?

V4. ¿Usar el sistema de seguridad propuesto incentivaría un uso mayor de la bicicleta?

V5. ¿El dispositivo pesa aproximadamente 2 kilos, cree que afectaría su rendimiento en la bicicleta?

V6. ¿Con este sistema de seguridad, se sentiría más seguro al usar la bicicleta?

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>0.51917183</td>
<td>0.5608256</td>
<td>0.48660756</td>
<td>0.04485667</td>
<td>0.40780653</td>
</tr>
<tr>
<td>V2</td>
<td>0.51917183</td>
<td>1</td>
<td>0.7279521</td>
<td>0.48598859</td>
<td>0.04331637</td>
<td>0.49136035</td>
</tr>
<tr>
<td>V3</td>
<td>0.5608256</td>
<td>0.7279521</td>
<td>1</td>
<td>0.66669441</td>
<td>0.1982034</td>
<td>0.5666991</td>
</tr>
<tr>
<td>V4</td>
<td>0.48660756</td>
<td>0.48598859</td>
<td>0.66669441</td>
<td>1</td>
<td>0.07403466</td>
<td>0.66788922</td>
</tr>
<tr>
<td>V5</td>
<td>0.04485667</td>
<td>0.04331637</td>
<td>0.1982034</td>
<td>0.07403466</td>
<td>1</td>
<td>0.04918306</td>
</tr>
<tr>
<td>V6</td>
<td>0.40780653</td>
<td>0.49136035</td>
<td>0.5666991</td>
<td>0.66788922</td>
<td>0.04918306</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia

11.5.3 Preferencia

En la construcción de la matriz de correlación preferencia se utilizan 2 preguntas con 70 respuestas para cada pregunta, y se encuentra identificado a continuación:

V1. ¿Qué tan eficiente cree usted que es un sistema de seguridad convencional como candados, cadenas o guayas?

V2. ¿Qué tan eficiente cree usted que es un sistema de seguridad basado en tecnología GPS?
12. DISCUSIÓN

A continuación, se realiza un análisis de los resultados obtenidos de la investigación de campo y el análisis de datos realizado.

En primer lugar, se analizan los resultados obtenidos de la aplicación del instrumento de medición. Seguidamente, se analizan los resultados obtenidos del análisis de confiabilidad por medio del cálculo del coeficiente Alfa de Cronbach y la correlación entre las preguntas que se realizaron para el estudio de las variables presentadas. Finalmente se hace la validación de las hipótesis propuestas en el capítulo 7 del presente documento.

12.1 Instrumento de medición

Al analizar los resultados de la encuesta realizada a 70 personas, se obtiene lo siguiente:

La motivación de los ciclistas a la hora de usar la bicicleta como medio de transporte es baja debido a las malas condiciones que presentan factores tales como seguridad, medio ambiente y estado de la malla vial.

En cuanto a la percepción de los encuestados respecto a la seguridad ciudadana es evidente que ésta es muy baja y es un factor que afecta la movilidad de los ciudadanos ya que al no sentir seguridad en sus trayectos deciden dejar de lado la bicicleta y usar otros medios de transporte.

Por otro lado, la percepción de los ciudadanos respecto al Sistema de Seguridad que se propone a lo largo de la investigación es buena debido a que en su mayoría se considera que al implementar este sistema la seguridad hacia el usuario y hacia la bicicleta aumentarían, de igual forma el rastreo y control de este medio de transporte se hace eficaz y permitiría en caso de un robo su localización de manera inmediata.

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>0.07856006</td>
</tr>
<tr>
<td>V2</td>
<td>0.07856006</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia
Es por esto que al realizar un análisis generalizado de la encuesta y los resultados que este arrojo, es importante resaltar que la implementación del sistema de seguridad propuesto sería de gran beneficio para los ciudadanos como para la ciudad en general ya que, si este medio de transporte es elegido por gran parte de la población, las calles se descongestionarían, la contaminación de la ciudad bajaría y el ambiente sería sano para los ciclistas, de igual forma la seguridad mejoraría y las personas estarían tranquilas a la hora de transportarse en su bicicleta.

12.2 Confiabilidad de los datos

De acuerdo a lo presentado en el numeral 11.4, se ha calculado la confiabilidad de los datos obtenidos del instrumento de medición con el fin de evaluar que tan acertado fue el ejercicio y que nivel de confiabilidad se tiene respecto a la medición de cada variable. Para la variable de motivación se obtuvo una confiabilidad de 0.5731 sin embargo eliminando la pregunta V4 se logra subir la confiabilidad a 0.7271. Analizando las preguntas posteriores a la aplicación del instrumento, se evidencia que las preguntas V1, V2 y V3, indagan directamente sobre el nivel de motivación para andar en bicicleta frente a un factor definido: Inseguridad, calidad el aire y estado de la malla vial, mientras las pregunta V4 solicita información acerca de la frecuencia en que se utilizan las ciclorutas. Es claro que no hay relación entre esta última pregunta con las primeras tres. Por tanto, la correlación de esta pregunta con las demás no es lo suficiente para tomarla como relevante ante la evaluación de la variable de motivación. Es decir, que para efectos del análisis esta variable se debe descartar y el nivel de confiabilidad de las tres preguntas restantes se puede tomar como aceptable.

Para la medición de la variable de percepción, enfocada a la seguridad, la confiabilidad fue la más baja con un valor de -0.0199 lo cual es totalmente inaceptable. La razón luego de analizar las preguntas se hace evidente ya que las 4 preguntas realizadas realmente no están enfocadas de la manera adecuada al preguntar sobre la percepción de inseguridad en la ciudad.
Sin embargo, eliminando la pregunta V3, se logra subir la confiabilidad a 0.5006. Esta diferencia se logra al eliminar una pregunta que un enfoque totalmente diferente al preguntar sobre la eficacia de la policía ante un evento cuando el objetivo principal es entender la percepción de inseguridad de la ciudad. Sin embargo, aunque la confiabilidad sube considerablemente, esta sigue siendo muy baja para poder tomar los datos como un resultado confiable.

En cuanto a la variable de percepción enfocada al sistema de seguridad propuesto, se obtuvo el mejor resultado. Con las seis preguntas realizadas se obtuvo una confiabilidad de 0.7693 y eliminando solo una de las preguntas se logró subir a 0.8614 lo cual se considera una confiabilidad buena, incluso se acerca a ser excelente.

Considerando el enfoque la investigación, que es justamente realizar la propuesta del sistema de seguridad para bicicletas, este resultado se considera exitoso y demuestra que las preguntas estuvieron bien enfocadas.

La pregunta V5 se descarta dado que ésta se enfoca en el rendimiento mientras las demás preguntas están relacionadas a las ventajas y a la seguridad.

12.3 Correlación de los datos

De acuerdo a lo presentado en el numeral 11.5, se ha calculado la correlación de los datos obtenidos del instrumento de medición con el fin de evaluar que tan correlación se tiene con cada una de las preguntas formuladas.

En la motivación se observa que existe un alto grado de correlación entre las preguntas V1, V2 y V3, pero la pregunta V4 no presenta correlación alguna con las preguntas anteriores. Exponiendo este análisis se puede llegar a la formulación que la pregunta V4 se podría omitir del formulario de preguntas y se obtendría la misma correlación con las tres preguntas anteriores.

En la percepción relacionada con la seguridad ciudadana se observa un alto grado de correlación entre las preguntas V1, V2 y V4, pero la pregunta V3 presenta un bajo grado de correlación con las preguntas anteriores. Este análisis nos señala que se podría omitir la pregunta V3 y se tendría el mismo grado de correlación entre las preguntas anteriores.
En la percepción relacionada con los sistemas de seguridad se observa un alto grado de correlación entre las preguntas V1, V2, V3, V4 y V6, pero la pregunta V5 no presenta correlación alguna con las preguntas anteriores. Exponiendo este análisis se podría omitir la pregunta V5 y se obtendría la misma correlación para las preguntas anteriores.

En la preferencia se observa una correlación baja entre la formulación de las dos preguntas. Pero esta variable se tomó la decisión de no realizar la formulación de más preguntas.

12.4 Validación de las hipótesis

Al inicio de la investigación se plantearon tres hipótesis las cuales se validan por medio de los resultados de la encuesta realizada y la confiabilidad de sus resultados.

La primera hipótesis presentada es: “La seguridad ciudadana es el factor de mayor impacto que desmotiva la utilización de la bicicleta como medio de transporte en la ciudad de Bogotá”.

Dentro de la variable de motivación se indago por tres factores que inciden directamente en ánimo de las personas por utilizar la bicicleta como medio de transporte: La inseguridad, el estado de la maya vial y la calidad del aire. Estos factores se definieron considerando que son los de mayor impacto para un ciclista.

De las 70 personas encuestadas se obtuvo que el 14.3% se sienten motivadas a salir en sus bicicletas considerando el nivel de inseguridad, 21.5% considerando la calidad del aire y el 18.6% considerando el estado de la malla vial. Esto indica que términos generales menos del 25% se siente motivada utilizar la bicicleta por cualquiera de estos factores. Esta medición se realiza considerando la sumatoria de las respuestas “de acuerdo” y “totalmente de acuerdo” para cada factor de manera independiente.

Realizando el mismo análisis, pero desde la óptica opuesta, es decir, contemplando las respuestas a las mismas preguntas cuyas respuestas fueron “en desacuerdo” y “totalmente en desacuerdo”, se obtuvo que, considerando el nivel de inseguridad, el 44.3% de las personas encuestadas se siente desmotivadas para utilizar la bicicleta considerando el nivel de inseguridad de la ciudad, el 47.1% respecto a la calidad del aire
y el 42.9% respecto al estado de la malla vial. Estos resultados sugieren que más del 40% de las personas encuestadas se sienten desmotivadas para usar su bicicleta como medio de transporte, y que el factor de mayor impacto es la calidad del aire.

De acuerdo con estos resultados se puede confirmar que, aunque existe un nivel de desmotivación alto en cuanto a la inseguridad, la hipótesis planteada es falsa. Sin embargo, de acuerdo al coeficiente Alfa de Cronbach la confiabilidad de los datos para esta variable es cuestionable, por lo tanto, antes de descartar esta hipótesis se sugiere realizar una muestra mayor y reevaluar el enfoque de las preguntas a realizar.

La segunda hipótesis que se plantea es: “Los usuarios de bicicleta prevén ventajas en la utilización del sistema de seguridad propuesto”.

Esta hipótesis se prueba utilizando los datos del instrumento de medición enfocados a la variable de percepción específicamente al indicador del sistema de seguridad propuesto.

Para este indicador se realizaron 6 preguntas enfocadas a identificar cual es la percepción acerca del sistema de seguridad propuesto.

Respecto a la pregunta “¿Cree usted que el sistema de seguridad propuesto tiene ventajas frente a los sistemas convencionales?”, el 55.7% está de acuerdo en que el sistema propuesto tiene ventajas sobre los sistemas convencionales. Entre las ventajas que este sistema puede brindar está el incremento en la eficacia de la policía para recuperar las bicicletas robadas a lo que nuevamente el 55.7% estuvo de acuerdo.

Muy de la mano con este último resultado, está la percepción en el aumento de la probabilidad de recuperar una bicicleta robada utilizando el sistema de seguridad propuesto, con lo cual el 65.7% de las personas estuvieron de acuerdo.

Adicionalmente, se realizó un análisis documental de los sistemas de seguridad para bicicletas existentes y un comparativo entre sus atributos y los del sistema propuesto, definiendo que este tiene ventajas sobre los sistemas convencionales en cuanto a la portabilidad e instalación, mantiene similitud respecto a la efectividad y su principal desventaja es el costo.

Considerando todo lo anterior, y que la confiabilidad de los datos es buena según el coeficiente de alfa de Cronbach (0.86), se puede confirmar que la hipótesis es verdadera.
Por último, se la plantea la siguiente hipótesis: “El sistema de seguridad propuesto es novedoso y no se ha implementado en la ciudad de Bogotá”.

De acuerdo con los datos obtenidos de la encuestas, el 90% de las personas no ha visto o utilizado un sistema similar al propuesto en la ciudad de Bogotá.

Si bien no fue posible, comprobar que el sistema propuesto esté siendo implementado por usuarios de manera particular, sí se encontró que la empresa MUVO, utiliza este sistema como su medio de control para el alquiler de bicicletas al público.

Respecto a la hipótesis, se debe declarar como falsa, sin embargo, se declara falsa al no ser lo suficientemente explícita ya que el sistema propuesto está siendo utilizado por una empresa bajo el esquema de alquiler de bicicletas, mas no se ha implementado como una plataforma para usuarios particulares. Por lo tanto, la hipótesis de debe replantear enfocada a una plataforma para usuarios privados, y debe ser reevaluada considerando que el dispositivo existe en la ciudad de Bogotá por lo tanto no es innovador como dispositivo, pero lo puede ser como modo de implementación.

13. RECOPIILACION DE REQUISITOS

El objetivo principal de la presente investigación es proponer un sistema de seguridad para bicicletas mediante la definición del alcance para lo cual se deben recopilar los requisitos necesarios del sistema.

En este capítulo se determinan y documentan los requisitos mínimos del sistema para que éste sea funcional y cumpla con las necesidades para las cuales se ha diseñado.

13.1 Entradas

El PMBOK define las entradas necesarias para determinar los requisitos de un proyecto. Tomando como base la metodología del PMBOK, lasentradas que se han tenido en cuenta para realizar la recopilación de los requisitos son:

- Descripción general del sistema propuesto
- Registro de supuestos
13.1.1 Descripción General del Sistema

De acuerdo con lo presentado anteriormente, se evidencia los múltiples sistemas de seguridad que existen en la actualidad en el mercado para los diferentes tipos de usuarios de bicicleta. Incluso, un mismo sistema puede ser utilizado por diferentes tipos de ciclistas dependiendo de sus prioridades en cuanto a proteger su bicicleta ante un robo adquiriendo el mismo sistema que otra persona haya comprado, pero de mejor calidad.

El sistema de seguridad propuesto, se compone de un candado de cuadro con un sistema electrónico integrado que incluye un módulo GPS para rastreo satelital el cual es controlado a través del celular del propietario.

Este sistema integra uno de los tipos de sistema de seguridad más simples, con tecnología de punta convirtiéndolo en un sistema con múltiples ventajas.

En primer lugar, la instalación del candado contempla que este debe ser soldado al marco de la bicicleta. Por lo tanto, se trata de un sistema fijo. Esto trae como ventaja, además de ser 100% portable, que en caso de robo el delincuente tarde un tiempo considerable para desinstalarlo, tiempo suficiente para alertar a las autoridades y realizar el seguimiento para recuperar la bicicleta. Esto lleva al siguiente punto, y es que el candado debe ser suficientemente robusto para resistir golpes que pueda recibir por parte del individuo en su intento por removerlo del marco.

El mecanismo es una mezcla entre mecánico y electrónico. Para operar del candado, se requiere instalar previamente una aplicación en el celular que le permitirá por medio de escaneo de un código QR tatuado sobre el candado la apertura del mismo.

Para cerrarlo se debe presionar manualmente hasta que este se bloquee abrazando la rueda trasera. Para abrirlo se escanea con el celular el cual por medio de bluetooth desbloquea el candado.

Una de las ventajas principales es que el GPS del candado siempre está activo. Por lo tanto, se podrá visualizar su posición en tiempo real en todo momento. Esta característica es la que hace el sistema diferente a los demás ya que la mayoría de robos ocurren cuando las personas están haciendo uso de su bicicleta, por lo tanto, en el momento de ser
despojado de la bicicleta, será posible rastrearlal en todo momento desde la aplicación móvil.

En caso que el celular sea robado también o simplemente no esté disponible en ese momento, el candado podrá ser rastreado desde cualquier celular siempre y cuando tenga la aplicación instalada ingresando con el usuario y clave asignada del propietario de la bicicleta.

Dadas las características anteriormente nombradas, este sistema a diferencia de los tradicionales, protege el activo no solo cuando esta parqueado sin supervisión, sino que también cuando se está haciendo uso del él.

Otras funcionalidades que tiene el sistema son la notificación al celular cuando la bicicleta está en movimiento, alarma sonora en caso de ser movida sin antes ser desbloqueada y un puerto USB para la recarga de la batería.

Una ventaja adicional que tiene el sistema, es la utilización de su enlace GPS con el celular no solo para cuestiones de protección sino también de información. Dado que el sistema GPS está activo todo el tiempo, es posible registrar y guardar rutas, estadísticas de uso, velocidad, distancias recorridas y demás información que al usuario pueda interesarle como deportista o simple curiosidad.

En la figura a continuación se ilustra el dispositivo instalado en una bicicleta para mayor entendimiento del modo de instalación y de operación del mismo.

Figura 24. Modo de uso del sistema propuesto

Fuente: http://www.vbike.mx/
13.1.2 Registro de Supuestos

A continuación, se presentan los supuestos bajo los cuales se definen los requisitos y posteriormente el alcance de la propuesta del sistema de seguridad para bicicletas. Dentro de los supuestos hay del tipo Comercial, Legal, Técnico, Personal y de Soporte.

Tabla 11. Registro de supuestos

<table>
<thead>
<tr>
<th>ID</th>
<th>Descripción</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>Los candados son de fabricación extranjera y deberán ser importados.</td>
<td>Comercial</td>
</tr>
<tr>
<td>S002</td>
<td>Actualmente en Colombia no hay oferta de sistemas de seguridad para bicicletas con las mismas características. El sistema es innovador.</td>
<td>Comercial</td>
</tr>
<tr>
<td>S003</td>
<td>El sistema será ofrecido con un precio asequible y competitivo respecto a otros tipos de sistemas. Se contará con la demanda para su comercialización.</td>
<td>Comercial</td>
</tr>
<tr>
<td>S004</td>
<td>La legislación colombiana permite la instalación y uso de estos dispositivos con la tecnología GPS y comunicación GSM.</td>
<td>Legal</td>
</tr>
<tr>
<td>S005</td>
<td>Los candados traerán incorporados el sistema GPS y su marcación QR de fábrica.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S006</td>
<td>Los candados tendrán una dimensión estándar para adaptar a cualquier tipo de marco de bicicleta.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S007</td>
<td>El protocolo de comunicación de los candados será GSM en las frecuencias autorizadas por la legislación colombiana</td>
<td>Técnico</td>
</tr>
<tr>
<td>S008</td>
<td>Los candados serán suministrados con su respectivo adaptador para carga por energía solar y un auxiliar para conexión de toma a 120VAC.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S009</td>
<td>La batería incorporada en los candados tendrá duración suficiente para mantenerse encendido durante 7 días de manera continua.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S010</td>
<td>La aplicación para la operación de los candados será desarrollada localmente para poder realizar mejoras de acuerdo a la demanda de los usuarios.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S011</td>
<td>La aplicación a desarrollar permitirá el uso de los candas con sistemas operativos Android y IOS.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S012</td>
<td>Los candados serán construidos para uso a la intemperie con una alta resistencia al agua.</td>
<td>Técnico</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Departamento</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>S013</td>
<td>Los candados serán fabricados en materiales resistentes a los golpes y ensamblado con tornillos de seguridad que eviten su apertura con herramientas convencionales.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S014</td>
<td>El peso de los candados no afectará el rendimiento de las bicicletas.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S015</td>
<td>La instalación de los candado sobre las bicicletas será parte del servicio adquirido con el candado y se dispondrá de un taller y personal para esta labor.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S016</td>
<td>El sistema tendrá cobertura a nivel nacional en caso de requerir ampliar las zonas de cobertura.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S017</td>
<td>El nivel de precisión y velocidad de comunicación son los óptimos para el tipo de aplicación y seguimiento en tiempo real.</td>
<td>Técnico</td>
</tr>
<tr>
<td>S018</td>
<td>Los candados contarán con las garantías y soporte técnico de fábrica.</td>
<td>Soporte</td>
</tr>
<tr>
<td>S019</td>
<td>Se contará con personal calificado a nivel local para dar soporte al sistema en términos de configuración y funcionamiento.</td>
<td>Soporte</td>
</tr>
<tr>
<td>S020</td>
<td>El sistema de seguridad propuesto incrementará la percepción de seguridad de los usuarios.</td>
<td>Personal</td>
</tr>
<tr>
<td>S021</td>
<td>El sistema de seguridad propuesto incrementará la probabilidades de recuperar la bicicleta en caso de hurto.</td>
<td>Personal</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Dentro del registro se supuestos se han relacionado 21 supuestos, los cuales han sido tenidos en cuenta para la recolección de requisitos y posteriormente la definición del alcance del proyecto.

De estos supuestos, 3 son del tipo comercial, 1 del tipo legal, 13 del tipo técnico, 2 de soporte y 2 de nivel personal.

Los supuestos comerciales se refieren a las consideraciones a nivel de mercadeo que deben ser revisadas en una etapa posterior del proyecto para asegurar la viabilidad económica del mismo.

De igual manera, lo supuestos de tipo legal, deben ser definido en una etapa posterior, pero por ningún motivo se recomienda iniciar el proyecto si haberlos resuelto todos, ya que este tipo de supuestos puede incluso cancelar el proyecto de manera definitiva.

El mayor número de supuestos son del tipo técnico y estos pueden ser revisado en la marcha. No se consideran críticos, aunque deben ser resueltos a tiempo para evitar contratiempos. Se hace la misma consideración para los del tipo de soporte.
Por último, los supuestos de tipo personal, se soportan por los resultados obtenidos en la aplicación de instrumento de medición utilizado en la investigación de campo, sin embargo, estos no podrán ser validados hasta que el sistema se haya implementado en un número considerable de bicicletas, por la tanto se debe seguir la ejecución del proyecto bajo estos supuestos.

13.1.3 Registro de los Interesados

Para la implementación del sistema propuesto, se han identificado 7 interesados calve que pueden afectar el proyecto de manera positiva o negativa de acuerdo a sus intereses. En la siguiente tabla se presenta el resumen de la identificación de los interesados.

Tabla 12. Interesados de la propuesta

<table>
<thead>
<tr>
<th>ID</th>
<th>INTERESADO</th>
<th>ROL</th>
<th>INFLUENCIA</th>
<th>INTERES</th>
<th>PRIORIDAD</th>
<th>EXPECTATIVA CLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT1</td>
<td>Desarrollador del Proyecto</td>
<td>Patrocinador</td>
<td>Muy alta</td>
<td>A favor</td>
<td>Alta</td>
<td>Viabilizar un proyecto que genere ingresos.</td>
</tr>
<tr>
<td>INT2</td>
<td>Usuarios de bicicleta</td>
<td>Usuario/Cliente</td>
<td>Muy Alta</td>
<td>A favor</td>
<td>Alta</td>
<td>Mitigar el riesgo de hurto y aumentar la probabilidad de recuperar la bicicleta.</td>
</tr>
<tr>
<td>INT3</td>
<td>Policía Metropolitana</td>
<td>Beneficiario/potencial aliado</td>
<td>Media</td>
<td>A favor</td>
<td>Alta</td>
<td>Disminuir índices de robo, aumentar efectividad en operativos.</td>
</tr>
<tr>
<td>INT4</td>
<td>Alcaldía</td>
<td>Beneficiario/potencial aliado</td>
<td>Media</td>
<td>A favor</td>
<td>Alta</td>
<td>Disminuir índice de robos, ganar popularidad con una ciudad más segura.</td>
</tr>
<tr>
<td>INT5</td>
<td>Aseguradoras</td>
<td>Beneficiario/potencial aliado</td>
<td>Baja</td>
<td>Neutral</td>
<td>Baja</td>
<td>Disminución en el cobro de pólizas por robo.</td>
</tr>
</tbody>
</table>
El primer interesado que se ha identificado es el desarrollador del proyecto. Hay que recordar que la presente investigación tiene como objeto proponer el alcance del sistema de seguridad, mas no la implementación del mismo. Por lo tanto, se identifica al desarrollador del proyecto como un tercero que será el responsable de implementar el sistema incluyendo su adquisición, comercialización y soporte del mismo.

El segundo interesado que se identifica es el usuario de bicicleta. Este interesado tiene la misma prioridad que el desarrollador del proyecto ya que sin este no sería posible viabilizar la implementación. Al igual que el desarrollador su influencia es muy alta y su interés es a favor.

Otro interesado con una alta relevancia es la Policía Metropolitana. Se clasifica como beneficiario y potencial aliado ya que de su interacción con los usuarios y el sistema depende la efectividad en la recuperación de bicicletas robadas. Se considera un aliado estratégico ya que la plataforma podría agregar valor significativamente a la gestión de la policía integrando las alertas por hurto por medio de notificaciones a los cuadrantes donde se reporte el hurto. Esto se considera como una opción de actualización del sistema posterior a su implementación.

La Alcaldía Mayor de Bogotá, también identificado como interesado, sería un principal beneficiario de la implementación del sistema. La instalación del sistema en un número considerable de bicicletas, con la colaboración de la policía, aportaría a la seguridad de la ciudad disminuyendo el índice de robos y aumentando la efectividad en la recuperación de las que sean robadas lo cual a su vez aumentaría la popularidad de la gestión de la alcaldía en lo que concierne al tema.

Esto abre la posibilidad de una alianza con la alcaldía que, a través de campañas, podría incentivar el uso del sistema beneficiando al desarrollador del proyecto aumentando el número de ventas y a la misma alcaldía ya que el incremento de usuarios impacta directamente la movilidad y disminución de la contaminación.
Dentro de los interesados que se identificaron con una prioridad baja, están las aseguradoras y los familiares de los usuarios de bicicleta. En el caso de las aseguradoras, se podrían ver beneficiadas en el sentido que un menor número pólizas por robo de bicicletas serían cobradas. Sin embargo, con el éxito de la implementación del sistema, también podrían bajar las ventas de seguros para bicicletas. En este sentido se deben analizar los beneficios de una alianza con las aseguradoras para promover el sistema a través de estas entidades ya que si no hay beneficio para las compañías aseguradoras no habrá interés en el sistema. Por esta razón se califica su posición como neutra.

En cuanto a los familiares de los usuarios de bicicleta, se identifican como interesados con el rol de beneficiarios ya que proteger la integridad de sus allegados es de gran interés lo cual los convierte en clientes potenciales para llegar a los usuarios de bicicleta.

En la siguiente figura se ilustra la clasificación de los interesados de acuerdo a su grado de influencia y su interés por la implementación del sistema de seguridad propuesto.

Figura 25. Matriz de interesados

Fuente. Elaboración propia.
La matriz de interesados refleja que los interesados de mayor interés y mayor influencia son el desarrollador del proyecto y los usuarios de bicicleta identificados como INT1 e INT 2 respectivamente.

En cuanto a la alcaldía y la policía identificados como INT 3 e INT4 respectivamente, se les considera en un nivel medio de influencia y a favor del proyecto.

Por último, se encuentran las aseguradores y familiares de los usuarios identificados como INT5 e INT6 respectivamente, los cuales tendrán una influencia baja y se consideran con una posición entre neutra y positiva respecto al proyecto.

13.2 Herramientas y Técnicas

Para la recopilación de los requisitos se utilizaron algunas de las herramientas y técnicas recomendadas por PMBOK en su última edición. Las herramientas y técnicas utilizadas fueron:

- Juicio de Expertos
- Recopilación de Datos
- Análisis de Datos

A continuación, se presenta una breve descripción del trabajo realizado bajo cada una de estas técnicas.

13.2.1 Juicio de Expertos

Considerando que la tecnología utilizada es igual a la requerida para el sistema de seguridad propuesto, se realizó el contacto con una empresa que se dedica a la venta de módulos GPS para vehículos automotores y presta el servicio de monitoreo satelital en tiempo real, donde sus principales clientes son empresas transportadoras y vehículos de transporte especial.

Producto de este acercamiento, fue la definición del modo de comunicación, el cual fue confirmado como GSM, y todas las características a tener en cuenta como frecuencias a utilizar, memoria, sensibilidad, entre otros.
Adicionalmente se logró recolectar información relevante sobre los requisitos de modulo GPS y sobre la normativa que regula el uso de esta tecnología. En el capítulo 13.2.3 se presentan en detalle los requisitos recolectados.

A continuación, se presentan los requisitos técnicos que debe cumplir el candado GPS de acuerdo a lo indicado por el experto consultado.

Tabla 13. Requisitos del modo de comunicación

<table>
<thead>
<tr>
<th>Requisitos GSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC</td>
</tr>
<tr>
<td>CPU MTK2503, frecuencia dominante: 260MHz</td>
</tr>
<tr>
<td>Modo de comunicación</td>
</tr>
<tr>
<td>GSM</td>
</tr>
<tr>
<td>Frecuencia GSM</td>
</tr>
<tr>
<td>850/900/1800/1900 MHz</td>
</tr>
<tr>
<td>GPRS</td>
</tr>
<tr>
<td>Clase 12, TCP / IP</td>
</tr>
<tr>
<td>Salida máxima</td>
</tr>
<tr>
<td>GSM850 / GSM900: 33 ± 3dBm</td>
</tr>
<tr>
<td>GSM1800 / GSM1900: 30 ± 3dBm</td>
</tr>
<tr>
<td>Memoria</td>
</tr>
<tr>
<td>64Mb</td>
</tr>
<tr>
<td>Error de frecuencia máxima</td>
</tr>
<tr>
<td>± 0.1ppm</td>
</tr>
<tr>
<td>Recibir sensibilidad</td>
</tr>
<tr>
<td>Clase II RBER2% (-102dBm)</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Tabla 14. Requisitos del módulo GPS

<table>
<thead>
<tr>
<th>Requisitos GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip</td>
</tr>
<tr>
<td>MTK chips GPS de alta sensibilidad</td>
</tr>
<tr>
<td>Frecuencia</td>
</tr>
<tr>
<td>GPS L1, 1575.42MHz</td>
</tr>
<tr>
<td>Canal GPS</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>Precisión de la ubicación</td>
</tr>
<tr>
<td>5-10 metros</td>
</tr>
<tr>
<td>Sensibilidad de seguimiento</td>
</tr>
<tr>
<td>-165dBm</td>
</tr>
<tr>
<td>Sensibilidad de adquisición</td>
</tr>
<tr>
<td>-148dBm</td>
</tr>
<tr>
<td>TTFF (cielo abierto)</td>
</tr>
<tr>
<td>Media arranque en caliente ≤ 1seg</td>
</tr>
<tr>
<td>Media arranque en frío ≤ 32seg</td>
</tr>
<tr>
<td>GNSS: ≤ 10 segundos</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.
Tabla 15. Requisitos técnicos generales

<table>
<thead>
<tr>
<th>Requisitos Técnicos Generales</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precisión de ubicación de Wi-Fi</td>
<td>3-50 metros</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>CSR BLE 4.0</td>
</tr>
<tr>
<td>Precisión de ubicación de iBeacon</td>
<td>1-10 metros</td>
</tr>
<tr>
<td>Sensor G</td>
<td>BMA 250E</td>
</tr>
<tr>
<td>Promedio de corriente de trabajo</td>
<td>Sobre 60mA</td>
</tr>
<tr>
<td>Promedio de corriente en espera</td>
<td>Sobre 4mA</td>
</tr>
<tr>
<td>Carga</td>
<td>Energía solar (6V / 5W)</td>
</tr>
<tr>
<td>Batería</td>
<td>10000mAh (3.7V / 2500mAh incorporados x 4 bytes 18650)</td>
</tr>
<tr>
<td>Dimensión del dispositivo (aproximadas)</td>
<td>73.8 (L) × 25.9 (W) × 12.2 (H) mm</td>
</tr>
<tr>
<td>Grado impermeable</td>
<td>IPx6</td>
</tr>
<tr>
<td>Condiciones de trabajo</td>
<td>Temperatura : -20-60 ºC Humedad: 5%-95% sin condensación</td>
</tr>
<tr>
<td>Antena</td>
<td>Antena GSM de banda cuádruple incorporada, antena de cerámica GPS de 25 x 25 x 4 mm</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

13.2.2 Recopilación de Datos

Dentro de la técnica de recopilación de datos, se realizó una tormenta de ideas con los miembros del equipo desarrollador de la presente investigación, con la intención de identificar requisitos adicionales a los técnicos que son necesarios para la implementación del sistema.

Como resultado del ejercicio se identificaron los siguientes requisitos que deben ser parte del alcance para viabilizar la implementación:

- Logística de importación ya que los candados son de fabricación extranjera.
- Adquisición o arrendamiento de un lugar donde se comercialice el sistema y que disponga del espacio necesario para adecuar un taller de soldadura donde serán instalados los equipos a las bicicletas de los clientes.
- Desarrollo de una aplicación móvil a nivel local para ser actualizada de acuerdo con las necesidades de los usuarios.
• Personal de soporte que garantice el servicio por garantía de los sistemas activos y el mantenimiento periódico de la plataforma desarrollada para la aplicación.

Si bien, estos requisitos no son propios del sistema GPS, son indispensables para asegurar la implementación del sistema.

13.2.3 Análisis de Datos

Bajo la técnica de análisis de datos, se realizó una revisión y evaluación de la información disponible acerca de sistemas de seguridad para bicicletas que utilizan la misma tecnología. Los sistemas identificados son lo descritos en el numeral 8.

De igual manera se revisó la información disponible acerca de la regulación en donde se identificaron las resoluciones, normas técnicas y estándares aplicables para la utilización de esta tecnología en Colombia.

Como resultado de este análisis se identificó que desde el año 2017, el estado colombiano exige que las terminales móviles en todo el país deben estar homologadas ante la CRC (Comisión de Regulación de Comunicaciones). Esto es un procedimiento mediante el cual, el usuario debe presentar ante la Comisión de Regulación de Comunicaciones una solicitud con el total de requisitos por cada modelo de terminal. (Artículo 7.1.1.2. de la Resolución CRC 5050 de 2016).

Las bandas y normas técnicas/estándares propuestos para los equipos terminales móviles de datos se presentan en la siguiente tabla:

Tabla 16. Requisitos del módulo GPS

<table>
<thead>
<tr>
<th>EQUIPO TERMINAL</th>
<th>NORMA DE CONEXION A LA RED</th>
<th>NORMAS TECNICAS APLICABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminales móviles:</td>
<td>Banda 850MHz: FCC –parte 22, sub-parte H</td>
<td>• Niveles de seguridad con respecto a la exposición contemplados en IEEE Std. C95.1 o ICNIRP, conforme a la recomendación UIT-T K.52.</td>
</tr>
<tr>
<td></td>
<td>Banda 1900 MHz: FCC –parte 24, sub-parte E</td>
<td></td>
</tr>
</tbody>
</table>

87
<table>
<thead>
<tr>
<th>Id</th>
<th>Descripción del requisito</th>
<th>Objetivo</th>
<th>(EDT)</th>
<th>Interesado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El modo de comunicación debe ser GSM.</td>
<td>Comunicar el candado con una red de datos para transmitir la información de localización.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>La comunicación GSM debe cumplir con lo descrito en la tabla 7. “Requisitos del modo de comunicación”.</td>
<td>Asegurar los requerimientos técnicos para poder operar en territorio Colombiano además de las funcionalidades básicas necesarias para la comunicación.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>El candado deberá tener integrado el modulo GPS.</td>
<td>Localizar el candado vía satelital.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>El módulo GPS debe cumplir con los requisitos descritos en las tablas 8. “Requisitos del módulo”</td>
<td>Asegurar las características mínimas</td>
<td>Desarrollador del Proyecto / Usuarios de bicicleta</td>
<td></td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Estas normas técnicas se incluyeron dentro del documento soporte del proyecto regulatorio publicado el 31 de diciembre de 2013 y se incorporan a la tabla de requisitos técnicos para la homologación de equipos terminales móviles en Colombia.

13.3 Documentación General de Requisitos

Como resultado de la aplicación de las herramientas y técnicas anteriormente mencionadas, y la revisión de la información de entrada, se obtiene como salida la documentación de los requisitos para que la implementación del sistema propuesto sea viable. A continuación, se presentan los requisitos para la implementación del sistema propuesto.

Tabla 17. Matriz de requisitos

<table>
<thead>
<tr>
<th>Id</th>
<th>Descripción del requisito</th>
<th>Objetivo</th>
<th>(EDT)</th>
<th>Interesado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El modo de comunicación debe ser GSM.</td>
<td>Comunicar el candado con una red de datos para transmitir la información de localización.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>La comunicación GSM debe cumplir con lo descrito en la tabla 7. “Requisitos del modo de comunicación”.</td>
<td>Asegurar los requerimientos técnicos para poder operar en territorio Colombiano además de las funcionalidades básicas necesarias para la comunicación.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>El candado deberá tener integrado el modulo GPS.</td>
<td>Localizar el candado vía satelital.</td>
<td>Desarrollador del Proyecto</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>El módulo GPS debe cumplir con los requisitos descritos en las tablas 8. “Requisitos del módulo”</td>
<td>Asegurar las características mínimas</td>
<td>Desarrollador del Proyecto / Usuarios de bicicleta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requisitos técnicos generales para el funcionamiento del equipo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Área de taller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contar con el espacio físico y herramientas para instalar los sistemas de seguridad en la bicicletas de los clientes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto / Usuarios de bicicleta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Aplicación móvil (APP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crear interfaz para operar el candado desde un teléfono celular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Equipo de Soporte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contar con profesionales que atiendan los requerimientos de los clientes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Área de oficina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contar con el espacio físico para personal de desarrollo y soporte del sistema.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contar con profesionales que realicen mantenimiento y actualicen el sistema de acuerdo a las necesidades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Equipo de Desarrollo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Servidores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Administrar la aplicación móvil y la información de los usuarios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumplir con la reglamentación para el uso de dispositivos de comunicación en territorio nacional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Homologación ante la Comisión de Regulación de Telecomunicaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Certificación FCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adquirir los permisos necesarios para operar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarrollador del Proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia

Estos requisitos comprenden los requerimientos mínimos a tener en cuenta para que la implementación del sistema sea viable y por lo tanto aportar al aseguramiento del éxito del proyecto.

Estos requisitos deben ser revisado y actualizados en cada fase del proyecto a medida que se obtenga información más detallada acerca de cada uno de ellos o se adquiera información sobre requisitos adicionales ya que ni hayan sido tenidos en cuenta hasta el momento.
14. DEFINICIÓN DEL ALCANCE

La definición del alcance, presente como uno de los procesos del PMBOK, ratifica su importancia como factor de éxito de un proyecto por lo que su adecuada definición debe ser considerada desde la fase de planeación. En caso de definirse de manera inadecuada, provocaría reprocesos en el trabajo o de los entregables definidos dentro de los hitos del proyecto, alterando el tiempo (cronograma) y el presupuesto (costo) estimados para el proyecto.

Por ende, este capítulo resalta algunas características relevantes presentes en el proceso de la definición del alcance, para lograr el objetivo principal del proyecto el cual radica en evaluar y proponer un sistema de seguridad para los usuarios de bicicletas que disminuya el índice de hurtos en la ciudad de Bogotá.

14.1 Entradas

14.1.1 Documentos del proyecto

Los documentos del Proyecto que servirán como entradas en el proceso de Definición del Alcance para este proyecto de Seguridad de Bicicletas, son los siguientes:

- **Registro de supuestos**: Descrito en la sección “13.1.2 Registro de supuestos”. En dicho numeral, se describen los diferentes tipos de supuestos definidos para el proyecto, los de tipo Comercial, legal, Técnico, Personal y de Soporte, todos estos servirán como instrumento de entrada, para analizar las restricciones del producto (Candado GPS), así como los interesados del proyecto referenciado en numeral 13.1.3, lo cuales afectan el proyecto en cada una de sus fases y pueden influir en el alcance del proyecto.

- **Documentación general de requisitos**: Descrito en la sección “13.3 Documentación General de Requisitos”. En dicho ítem se definen y analizan cada una de las exigencias mínimas requeridas para la implementación y el aseguramiento de la calidad durante y después de la implementación del sistema.
Es indispensable que estos sean tenidos en cuenta en su totalidad para garantizar el éxito del Proyecto en general.

- **Factores ambientales:** En la documentación de los requisitos, se hace énfasis en la necesidad de una infraestructura adecuada, así como la gestión de personal la cual se requiere para la fase de desarrollo e implementación del sistema, así como en la fase posterior donde se requerirá de soporte y actualizaciones del sistema para que se mantenga vigente.

14.2 Herramientas y técnicas

14.2.1 Juicio de expertos

El juicio de expertos, presente en las herramientas y técnicas recomendadas por el PMBOK en el proceso de la Definición del Alcance, incide en el nivel de experticia y lecciones aprendidas del personal técnico y operacional que ha participado en proyectos e implementaciones de estas características, por ende, sus observaciones y opiniones tienen una relevancia alta para obtener el objetivo esperado. Para el Proyecto de seguridad de bicicletas se realizó la respectiva consultoría y acompañamiento de una compañía que se dedica a la comercialización de módulos GPS para vehículos automotores y presta el servicio de monitoreo satelital en tiempo real, misma empresa que colaboro con la recolección de los requisitos en la fase anterior.

14.2.2 Análisis de datos

Gracias a la recolección de información de proyectos similares y mediante la investigación de campo, se puede analizar el medio donde se han implementado estos sistemas de ubicación satelital y si se logra a priori cumplir con el objetivo principal dentro de los tiempos establecidos. Cabe resaltar que este análisis de datos está presente en los procesos de Recopilación de Requisitos (Numeral 13.2.3) y definición del Alcance descrita en el presente ítem.
Este proceso construye a partir de toda la información disponible acerca de las regulaciones, resoluciones, estatutos, normas técnicas y estándares aplicables para la utilización de esta tecnología satelital en Colombia.

14.2.3 Análisis del producto

Otra herramienta que se utilizó y que se encuentra dentro de la guía del PMBOK, es el análisis del producto, donde se desglosa el producto y se realiza el análisis de los requisitos.

Dentro del desglose del producto se identifican las diferentes fases que se deben llevar a cabo para su implementación ya que este se compone principalmente de un hardware, el cual es adquirido con una compañía que lo desarrolla, y un software, el cual debe ser desarrollado de manera propia. También se encuentran otros elementos en el desglose del producto como son la instalación y la puesta en servicio del sistema para lo cual se identifica la necesidad de infraestructura y personal para ejecutar el proyecto a satisfacción.

Por otro lado, está el análisis de los requisitos. Estos requisitos son tomados en cuenta uno a uno para desarrollar el enunciado del alcance de tal forma que ninguno de estos sea omitido.

14.3 Salidas

14.3.1 Enunciado del alcance del proyecto

El enunciado del alcance, de acuerdo con lo descrito por la guía del PMBOK, debe incluir la descripción del alcance donde se describen gradualmente las características del producto o servicio. En esta parte de describa de manera detallada las actividades que debe ser desarrolladas y el orden en que se deben ejecutar.

Seguido a esto, se realiza la definición de los entregables junto con sus criterios de aceptación, es decir, con qué condiciones debe cumplir el entregable para poder ser aceptado.
Por último, se hace referencia a las exclusiones del proyecto, donde se indica todo aquello que no hace parte del alcance del proyecto.

14.3.1.1 Descripción del Alcance del proyecto

Para la descripción del alcance del proyecto, se tomó como principal entrada la documentación general de los requisitos definidos en el proceso de recolección de requisitos.

El éxito del proyecto depende en gran medida en el cumplimiento de los criterios mínimos establecidos como parámetros de entrada, es decir, la definición de requisitos, lo cual proporciona y garantiza que el proyecto y el producto satisfagan una necesidad con un estándar de calidad. Por ende, en el diagrama de flujo presentado en la figura 26, se debe contar no solo con el hardware importado y con el desarrollador que realizará la aplicación móvil, también debe contar con varios elementos para que una vez se ponga en marcha el proyecto todas las entradas, procesos y salidas, se orquesten de la mejor manera, para lograr la optimización de las actividades y obtener así buenos resultados en cada una de las fases del proyecto. A su vez, esto permitirá definir unos criterios de aceptación para los entregables principales.

A continuación, se muestra la figura 26, las acciones y la secuencia para atender cada uno de los requisitos y así asegurar el cumplimiento de los mismos en pro de aportar al éxito del proyecto. En este diagrama de flujo, se pueden observar las principales actividades para la puesta en marcha del proyecto todas y cada uno de sus entradas, salidas, procesos y decisiones.
Figura 26. Diagrama de Flujo Enunciado del Alcance

Fuente. Elaboración Propia.
En la anterior figura se logra observar, que antes de iniciar cualquier actividad debe realizarse un trabajo de campo que radica en la búsqueda de al menos tres proveedores que cuenten con acreditación, certificación y experticia en el campo de comercialización de candados GPS para bicicletas, producto que debe tener todas las consideraciones técnicas definidas, una vez se cuente con el candado satelital debe procederse a su importación y homologación, es decir el artefacto debe cumplir con la reglamentación para el uso de dispositivos de comunicación en territorio nacional, si se cuenta con dicha reglamentación, debe certificarse ante el FCC *Federal Communications Commission*, esto último es de vital importancia ya que al ser una herramienta de comunicaciones debe contar con los debidos permisos y documentación en regla para operar de manera legal en Colombia, luego de cumplir estos requisitos previos deberá contarse con el espacio físico para el montaje del Taller donde se realizara el aprovisionamiento del candado satelital, a su vez deberá contarse con el espacio para el bodegaje donde se almacenarán los candados satelitales y el espacio donde se establecerá la oficina donde estará ubicado el personal administrativo y los ingenieros de Desarrollo de Software, cabe resaltar que la aplicación móvil debe soportarse sobre una infraestructura tecnológica optima la cual puede ser obtenida a través de un tercero que cuente con la experiencia en el campo, siendo líder y pionera en este tipo de servicios, una vez se tenga el ambiente propicio de trabajo deben adecuarse ambientes (Servidores) de desarrollo, donde los desarrolladores podrán desplegar sus soluciones y realizar los diferentes ciclos de pruebas, también deberá existir un ambiente de producción donde se desplegará las soluciones finales y donde se contará con una seguridad óptima para evitar ser vulnerables a ataques cibernéticos, adicional para prestar un buen servicio sobre la aplicación y sobre el hardware se mantendrá al equipo de soporte técnico y servicio al cliente debidamente capacitado, para prestar una Buena calidad en el servicio de soporte para los bici usuarios.

14.3.1.2 Entregables y sus criterios de aceptación

El PMBOK define los entregables y sus criterios mínimos de aceptación, como el resultado verificable que se debe producir para completar un proceso o una fase del
proyecto. Para el proyecto de seguridad de bicicletas se establecieron los siguientes entregables con sus respectivos criterios de aceptación:

- **Candado GPS almacenado en bodega:** El candado satelital deberá estar inventariado dentro de las existencias disponibles en el almacén y cada uno de ellos deberá contar con su respectiva ficha técnica, con serial y debida documentación requerida por parte de las normativas y regulaciones de comunicaciones colombianas, dicho artefacto deberá ser sometido por diversas pruebas de testeo para verificar su debido funcionamiento y se establecerá una serie de acuerdos con el proveedor en dado caso alguna plataforma móvil no sea compatible con el hardware adquirido para realizar el cambio de dichos candados de seguridad para bicicletas.

- **APP Móvil:** La aplicación móvil a desarrollarse estará disponible para los sistemas operativos móviles existentes en el Mercado IOS/Android, respectivamente, y se contará con despliegues de optimización continuos para mejorar la calidad del software, esta aplicación tendrá una interfaz amigable y muy deductiva proporcionando una Buena interacción con el usuario final, cabe resaltar que por cada actualización a nivel de software el equipo de soporte deberá hacer todas las pruebas y deberá documentar el estado de las mismas, si estas arrojan un resultado negativo, debe procederse a realizarse un *rollback* dejando operativa la última versión Buena conocida.

- **Servidores:** Para garantizar la disponibilidad del aplicativo arriba del 95% se deben generar acuerdos con la compañía contratada, que asegure que su infraestructura contará con alta disponibilidad y de realizarse labores de mantenimiento, como la actualización de parches de seguridad, deberán realizarse sesiones de pruebas con el soporte de primer nivel que garantizarán el correcto funcionamiento del aplicativo allí alojado. A su vez los *backups* realizados y el tiempo de retención de los mismos deberán estar estipulados en acuerdos contractuales.

- **Equipo de Soporte de primer nivel:** Para lograr un adecuado soporte y excelencia en el servicio, la compañía de acuerdo a los requerimientos e incidentes que se generen sobre la marcha de la implementación del candado satelital y configuración de la App Móvil, deberá incluir acuerdos de niveles de servicio ANS, para definir
tiempos apropiados en la atención de estos requerimientos, a su vez el equipo de soporte de primer nivel que atenderá dichas solicitudes deberá documentar de manera detallada cada requerimiento solucionado y deberá contar con el visto bueno del soporte brindado por parte del usuario final, dicha documentación también deberá estar presente en caso de auditorías para lograr obtener alguna certificación.

14.3.1.3 Exclusiones del proyecto

Así como es importante definir todo lo que incluye el alcance del proyecto, también es esencial, documentar todo aquello que no hace parte del alcance, es decir las exclusiones del proyecto. No es suficiente con indicar el alcance, ya que esto puede dejar elementos sin resolver y al no ser especificados como exclusiones, pueden afectar el alcance original del proyecto, y por lo tanto el cronograma y costos también se verían afectados.

A continuación, se listan las exclusiones del proyecto que deben ser tenidas en cuenta para su desarrollo y posterior implementación:

1. El sistema no está considerado para su instalación en vehículos diferentes a bicicletas.
2. El sistema no tendrá soporte postventa por fuera del área de cobertura, es decir, Bogotá y sus alrededores. Todo dispositivo deberá ser llevado a las instalaciones del desarrollador para cualquier tipo de reclamo.
3. No se considera el envío de los dispositivos directamente a los usuarios. Estos deben ser instalados en el taller autorizado para preservar las garantías del dispositivo.
4. La APP móvil, no está considerada para utilizarse en sistemas operativos diferentes a Android y IOS.
5. La APP móvil no contempla cobertura por fuera de la zona preestablecida, es decir, Bogotá y sus alrededores.
6. La APP móvil no contempla enlace directo con la policía. Este desarrollo se implementará en una fase posterior.
7. El proyecto no contempla el monitoreo constante de las bicicletas por un tercero.
 El monitoreo es propio de cada usuario.

15. CONCLUSIONES Y RECOMENDACIONES

Durante el desarrollo de la presente investigación se utilizó un instrumento de medición que para el caso específico fue la aplicación de una encuesta aplicación dirigida a usuarios de bicicleta en la ciudad de Bogotá y el análisis de datos referente a los sistemas de seguridad existentes para la protección de bicicletas, con el propósito de recolectar información que permitiera cumplir con el objetivo general de evaluar y proponer un sistema de seguridad para los usuarios de bicicletas que disminuyan el índice de hurtos en la ciudad de Bogotá, mediante la definición del alcance utilizando herramientas y técnicas de los procesos del PMBOK “recopilar requisitos” y “definir el alcance”.

Para lograr este objetivo, se trabajó sobre tres objetivos específicos. En primer lugar, se realizó una investigación exhaustiva sobre los sistemas de seguridad para bicicletas existentes. De esta investigación se encontró que ya se están implementando dispositivos con tecnología GPS, sin embargo, ninguno de estos provee un nivel de seguridad adicional a de la geolocalización, lo cual ya evidencia la generación de valor del sistema propuesto.

Por medio de la encuesta, se logró obtener información confiable sobre de la percepción de los usuarios de bicicleta respecto a la implementación del sistema propuesto. Con la percepción de los encuestados, y el análisis de las características de los sistemas existentes, se pudo confirmar que el sistema propuesto efectivamente provee ventajas significativas frente a otros sistemas y que su aplicación podría influir en la reducción de hurto de bicicletas.

Sin embargo, se detecta una falencia en la eficacia del sistema cuando la bicicleta se encuentra estacionada ya que, aunque candado bloquea totalmente la rueda trasera, la bicicleta puede ser movilizada fácilmente por el delincuente. Por lo tanto, se concluye que este sistema debe ser complementado por algún otro sistema que aumente la seguridad cuando se estacione la bicicleta en un lugar donde no pueda ser vigilada por el propietario.
Respecto al segundo objetivo específico, por medio de la encuesta se analiza la percepción de la situación actual en cuanto a la inseguridad. Sin embargo, la confiabilidad de los datos obtenidos fue pobre. Aunque se identifica que la inseguridad es un problema real, los datos no son lo suficientemente confiables para concluir al respecto.

Se hace necesario que el instrumento de medición sea reevaluado en este sentido y se repitan las preguntas relacionadas a la percepción de la seguridad en la ciudad de Bogotá para los ciclistas.

En cuanto al tercer objetivo específico, el cual es definir el enunciado del alcance de acuerdo a lo recomendado por el PMBOK, se puede concluir que se desarrolló de manera exitosa, lo cual se atribuye principalmente a la recolección de requisitos, la cual se realiza utilizando la metodología propuesta por la guía del PMBOK. El enunciado, describe de manera detallada las actividades que debe ser desarrolladas y que a su vez cubren los requisitos del proyecto de manera adecuada.

Por lo tanto, se concluye que el objetivo general de la investigación se cumple de manera satisfactoria, sin embargo, se debe reforzar los datos relacionados a entender mejor la situación actual en términos de inseguridad para los ciclistas, lo cual puede dar entradas para mejorar el sistema propuesto.

El documento también plantea tres hipótesis. La primera: “La seguridad ciudadana es el factor de mayor impacto que desmotiva la utilización de la bicicleta como medio de transporte en la ciudad de Bogotá”, se evalúa por medio del resultado obtenido de la encuesta.

Esta arrojó que el factor que más desmotiva a los ciclistas para movilizarse en la ciudad de Bogotá es la calidad del aire. Considerando que la diferencia entre la seguridad y la calidad del aire es relativamente baja, 44.3% y 47.1% respectivamente, que las preguntas están relacionadas de manera indirecta y fueron presentadas de manera independiente y que la confiabilidad de los datos es cuestionable, no es posible rechazar la hipótesis totalmente por lo tanto el rechazo es parcial.

Se recomienda que las preguntas no sean realizadas de manera independiente, y en su lugar se realice el comparativo entre estos dos factores de manera directa y que a su
vez la muestra de personas encuestadas sea mayor para determinar si efectivamente la calidad del aire prevalece sobre la inseguridad.

De igual manera se recomienda que este estudio se realice de manera sectorizada, lo cual permitirá valuar en que sectores se debe enfocar el sistema propuesto.

La segunda hipótesis: “Los usuarios de bicicleta prevén ventajas en la utilización del sistema de seguridad propuesto”, se analiza de igual manera por medio del resultado de la encuesta aplicada y adicionalmente por medio de un comparativo entre los sistemas existentes y el sistema propuesto.

Respecto a la encuesta, a diferencia de la hipótesis anterior, la confiabilidad de los datos obtenidos es buena. Como resultado se obtuvo que el 55.7% considera que el sistema propuesto tiene ventajas frente a los sistemas convencionales, el 55,7% considera que aumentaría la eficacia de la policía en la recuperación de las bicicletas robadas y el 65.7% que la probabilidad de recuperar su bicicleta en caso de hurto aumentaría.

En cuanto al comparativo realizado con los demás sistemas de seguridad investigados, se comprueban ventajas en la portabilidad y eficacia.

Por consiguiente, se acepta totalmente la hipótesis planteada.

La tercera y última hipótesis: “El sistema de seguridad propuesto es novedoso y no se ha implementado en la ciudad de Bogotá”, se acepta parcialmente que por medio de los casos de éxito referenciado en el numeral 8.10 del presente documento, se evidencia que el sistema propuesto ya está siendo implementado por la empresa MUVO en Bogotá, por lo tanto, no se puede considerar como novedoso o innovador. Sin embargo, el modo de aplicación si lo es, ya que MUVO se dedica al alquiler de bicicletas eléctricas y usa este sistema como medio de control y monitoreo con sus usuarios, mientras el sistema propuesto está enfocado en usuarios particulares dueños de su propio candado GPS.
16. REFERENCIAS BIBLIOGRÁFICAS

Biciregistro.co. (18 de Febrero de 2019). Biciregistro.co. Obtenido de https://www.biciregistro.co/nosotros?

Colombia, pp. 1–8.
Inventor’s Business. (2 de Noviembre de 2019). GPS - tracked bikes roll into NYC.
Marquez, L. (2016). La percepción de seguridad en la demanda de transporte de la integración bicicleta-metro en Bogotá, Colombia. Lecturas de Economía-Univesidad de
Antioquia, 1, 143–177. https://doi.org/10.17533/udea.le.n84a05

ANEXO A. Resultados encuesta.
ANEXO B. Autorización de publicación.